Фермент кишечного сока расщепляющий углеводы
Ферме́нты пищеваре́ния, пищеварительные ферменты — ферменты, расщепляющие сложные компоненты пищи до более простых веществ, которые затем всасываются в организм. В более широком смысле пищеварительными ферментами также называют все ферменты, расщепляющие крупные (обычно полимерные) молекулы на мономеры или более мелкие части.
Все ферменты желудочно-кишечного тракта относятся к гидролазам, что означает, что расщепление пищевых полимеров происходит всегда при участии молекулы воды.
Пищеварительные ферменты находятся в пищеварительной системе человека и животных. Кроме этого, к таким ферментам можно отнести внутриклеточные ферменты лизосом.
Основные места действия пищеварительных ферментов в организме человека и животных — это ротовая полость, желудок, тонкая кишка. Эти ферменты вырабатываются такими железами, как слюнные железы, железы желудка, поджелудочная железа и железы тонкой кишки. Часть ферментативных функций выполняется облигатной кишечной микрофлорой.
По субстратной специфичности пищеварительные ферменты делятся на несколько основных групп:
- протеазы: эндопептидазы, которые катализируют расщепление внутренних пептидных связей (пепсин, реннин, гастриксин в желудочном соке и трипсин, химотрипсин, эластаза в панкреатическом соке) и экзопептидазы, которые отщепляют по одной аминокислоте с карбоксильного конца (карбоксипептидаза в панкреатическом соке и аминопептидаза, пептидазы в кишечном соке)
- липазы расщепляют липиды до жирных кислот и глицерина
- карбогидразы гидролизуют углеводы, такие как крахмал или сахара, до простых сахаров, таких как глюкоза
- нуклеазы расщепляют нуклеиновые кислоты до нуклеотидов
Ротовая полость[править | править код]
Ферменты пищеварения, упрощенная схема
Слюнные железы секретируют в полость рта:
- альфа-амилазу (птиалин), которая расщепляет высокомолекулярный крахмал до более коротких фрагментов и до отдельных растворимых сахаров (декстрины, мальтоза, мальтриоза).
- альфа-глюкозидазу (мальтазу), расщепляет мальтозу на две молекулы глюкозы
Желудок[править | править код]
Ферменты, секретирующиеся желудком называются желудочными ферментами. По химической природе практически все ферменты являются белками. В желудке также вырабатывается соляная кислота, которая обладает бактерицидным действием; активирует фермент пепсин; вызывает денатурацию и набухание белков.
- Пепсин — основной желудочный фермент. Гидролитически расщепляет пептидные связи денатурированных белков до пептидов. Вырабатывается в так называемых «главных клетках» в неактивной форме в виде пепсиногена, чтобы предотвратить самопереваривание слизистой желудка. В полости желудка в кислой среде (рН=1.5—2,5) происходит превращение пепсиногена в активный пепсин. При этом отщепляется пепсин-ингибитор. Процесс идет аутокаталитически при участии НСl (ионов Н+), которая также вырабатывается в слизистой желудка, но в так называемых «обкладочных клетках». Молекулярный вес пепсиногена около 42 000, а пепсина — около 35 000. Из этого следует, что реакция превращения пепсиногена в пепсин сопровождается отщеплением 15—20 % исходной молекулы. Активирование происходит за счет отщепления N-концевого участка пепсиногена, в котором сосредоточены все основные аминокислоты. Среди продуктов отщепления обнаруживается ингибитор пепсина с молекулярным весом 3242 и пять более мелких фрагментов, в сумме отвечающих молекулярному весу около 4000. Для защиты стенок желудка от агрессивной кислой среды «добавочные клетки» слизистой вырабатывают муцин — гликопротеид — и ионы бикарбоната.
- Гастриксин, реннин – тоже расщепляют белки.
- Желатиназа расщепляет желатин и коллаген, основные протеогликаны мяса на полипептиды, пептиды и аминокислоты.
- Липаза – жиры на глицерин и жирные кислоты, но ее активность в желудке незначительна.
- Химозин – створаживает молоко
Тонкая кишка[править | править код]
Желчь[править | править код]
Желчь человека также участвует в процессах пищеварения. Она вырабатывается постоянно печенью и собирается в желчном пузыре. В ее состав не входят ферменты. Она переводит в активное состояние ферменты поджелудочной железы, эмульгирует жиры (что облегчает их расщепление), усиливает перистальтику кишечника, стимулирует продукцию слизи, ликвидирует действие пепсина желудка, опасного для ферментов поджелудочной железы.
Ферменты поджелудочной железы[править | править код]
Поджелудочная железа является основной железой в системе пищеварения. Она секретирует ферменты (более 20) в просвет двенадцатиперстной кишки.
- Протеазы:
- Трипсин является протеазой, аналогичной пепсину желудка.
- Химотрипсин — также протеаза, расщепляющая белки пищи.
- Карбоксипептидаза
- Несколько различных эластаз, расщепляющих эластин и некоторые другие белки.
- Нуклеазы, расщепляющие нуклеиновые кислоты нуклеотидов.
- Стеапсин, расщепляющий жиры.
- Амилазу, расщепляющую крахмал и гликоген, а также другие углеводы.
- Липаза поджелудочной железы является важнейшим ферментом в переваривании жиров. Она действует на жиры (триглицериды), предварительно эмульгированные желчью, секретируемой в просвет кишечника печенью.
Ферменты тонкой кишки[править | править код]
- Несколько пептидаз, в том числе:
- энтеропептидаза — превращает неактивный трипсиноген в активный трипсин;
- аланинаминопептидаза — расщепляет пептиды, образовавшиеся из белков после действия протеаз желудка и поджелудочной железы.
- Ферменты, расщепляющие дисахариды до моносахаридов:
- сахараза расщепляет сахарозу до глюкозы и фруктозы;
- мальтаза расщепляет мальтозу до глюкозы;
- изомальтаза расщепляет мальтозу и изомальтозу до глюкозы;
- лактаза расщепляет лактозу до глюкозы и галактозы.
- Липаза кишечника расщепляет триглицериды на глицерин и жирные кислоты.
- Эрепсин, фермент, расщепляющий белки.
Микрофлора кишечника[править | править код]
Обитающие в толстом кишечнике человека микроорганизмы выделяют пищеварительные ферменты, способствующие перевариванию некоторых видов пищи.
- Кишечная палочка — способствует перевариванию лактозы
- Лактобактерии — превращают лактозу и другие углеводы в молочную кислоту
Пищеварительные ферменты насекомоядных растений[править | править код]
Из секрета непентеса Nepenthes macferlanei выделены протеазы, продемонстрирована также липазная активность. Его главный фермент, непентезин, по субстратной специфичности напоминает пепсин.[1]
Примечания[править | править код]
- ↑ Zoltán A. Tökés, Wang Chee Woon and Susan M. Chambers. Digestive enzymes secreted by the carnivorous plant Nepenthes macferlanei L. Planta, 1974, Volume 119, Number 1, 39-46
Ссылки[править | править код]
- https://www.innvista.com/health/nutrition/diet/enzymecl.htm
- Анатомия и физиология человека: учеб. для студ. учреждений сред. проф. образования / И. В. Гайворонский, Г. И. Ничипорук, А. И. Гайворонский. — 6-е изд., перераб. и доп. — М. : Издательский центр «Академия», 2011. — 496 с. ISBN 978-5-7695-7794-9
Источник
Переваривание углеводов. Последовательность переваривания углеводов в ЖКТа) Углеводные продукты в пище. В пищевом рационе человека встречаются только три основных источника углеводов: (1) сахароза, которая является дисахаридом и широко известна как тростниковый сахар; (2) лактоза, являющаяся дисахаридом молока; (3) крахмал — полисахарид, представленный практически во всей растительной пище, в особенности в картофеле и различных видах зерновых. Другими углеводами, усваиваемыми в небольшом количестве, являются амилоза, гликоген, алкоголь, молочная кислота, пиро-виноградная кислота, пектины, декстрины и в наименьшем количестве — производные углеводов в мясе. Пища также содержит большое количество целлюлозы, которая является углеводом. Однако в пищеварительном тракте человека не существует фермента, способного расщепить целлюлозу, поэтому целлюлоза не рассматривается как пищевой продукт, пригодный для человека. б) Переваривание углеводов в ротовой полости и желудке. Когда пища пережевывается, она смешивается со слюной, которая содержит пищеварительный фермент птиалин (α-амилазу), секретирующийся в основном околоушными железами. Этот фермент гидролизует крахмал на дисахарид мальтозу и другие небольшие глюкозные полимеры, содержащие от 3 до 9 молекул глюкозы, как показано на рисунке ниже.
Однако в ротовой полости пища находится короткое время, и, вероятно, до акта глотания гидролизуется не более 5% крахмала. Тем не менее, переваривание крахмала иногда продолжается в теле и дне желудка еще в течение 1 ч до тех пор, пока пища не начнет перемешиваться с желудочным секретом. Затем активность амилазы слюны блокируется соляной кислотой желудочного секрета, т.к. амилаза как фермент в принципе не активна при снижении рН среды ниже 4,0. Несмотря на это, в среднем до 30-40% крахмала гидролизуется в мальтозу прежде, чем пища и сопутствующая ей слюна полностью перемешаются с желудочными секретами. в) Переваривание углеводов в тонком кишечнике. Переваривание панкреатической амилазой. Секрет поджелудочной железы, как и слюна, содержит большое количество амилазы, т.е. он почти полностью схож в своих функциях с α-амилазой слюны, но в несколько раз эффективнее. Таким образом, не более чем через 15-30 мин после того, как химус из желудка попадет в двенадцатиперстную кишку и смешается с соком поджелудочной железы, фактически все углеводы оказываются переваренными. В результате прежде чем углеводы выйдут за пределы двенадцатиперстной кишки или верхнего отдела тощей кишки, они почти полностью превращаются в мальтозу и/или в другие очень небольшие полимеры глюкозы. г) Гидролиз дисахаридов и небольших полимеров глюкозы в моносахариды ферментами кишечного эпителия. Энтероциты, выстилающие ворсинки тонкого кишечника, содержат четыре фермента (лактазу, сахаразу, мальтазу и α-декстриназу), способных расщеплять дисахариды лактозу, сахарозу и мальтозу, а также другие небольшие глюкозные полимеры на их конечные моносахариды. Эти ферменты локализованы в микроворсинках щеточной каемки, покрывающей энтероциты, поэтому дисахариды перевариваются сразу, как только соприкасаются с этими энтероцитами. Лактоза расщепляется на молекулу галактозы и молекулу глюкозы. Сахароза расщепляется на молекулу фруктозы и молекулу глюкозы. Мальтоза и другие небольшие глюкозные полимеры расщепляются на многочисленные молекулы глюкозы. Таким образом, конечными продуктами переваривания углеводов являются моносахариды. Все они растворяются в воде и мгновенно всасываются в портальный кровоток. В обычной пище, в которой из всех углеводов больше всего крахмала, более 80% конечного продукта переваривания углеводов составляет глюкоза, а галактоза и фруктоза — редко более 10%. Основные стадии переваривания углеводов обобщены на рисунке выше. – Также рекомендуем “Переваривание белков. Этапы и последовательность переваривания белков” Оглавление темы “Пищеварительные соки. Переваривание углеводов, белков, жиров”: |
Источник
Метаболизм углеводов в организме человека – сложный, многоступенчатый процесс. Он включает в себя переваривание, усвоение и синтез углеводов. Пища обрабатывается в ЖКТ и поступает в кровь для последующего использования глюкозы организмом.
Биологическая роль углеводного обмена для организма человека
При патологии углеводного обмена возникают отклонения в работе центральной нервной системы, сердца, мышц и ряде других органов. При недостатке углеводов может возникать слабость, апатия, головокружение, бессознательное состояние с расстройством мышления, потеря сознания и мышечные судороги.
Углеводы являются главным источником для функционирования мозга, а значит, — мыслительной деятельности человека. Мозг потребляет не менее 25% от общего количества калорий, поступающих из углеводов в организм человека.
Метаболизм углеводов в организме ребенка в 3-4 раза интенсивнее, чем у взрослого. В детском и подростковом возрасте повышается потребность как в углеводах, так и в других нутриентах пищи – белках и жирах.
Еще одной особенностью детского углеводного обмена являются резкие колебания уровня глюкозы. Чем младше ребенок, тем меньше в его крови глюкозы при замере натощак. Помимо того, у детей неразвиты гликогеновые депо, а усвояемость углеводов составляет 98-99%.
Взрослым людям требуется почти в половину меньше углеводов, чем ребенку.
Краткие сведения об углеводах (виды, значение и функции углеводов. Для чего они нужны)
По структуре углеводы делятся на 3 группы.
- Моносахариды это простейшие органические соединения. В их число входят: глюкоза, фруктоза, дезоксирибоза и рибоза, а также альдозы и кетозы.
- Олигосахариды включают в себя от 2 до 10 моносахаридных остатков. Самые известные — дисахариды – подгруппа олигосахаридов, состоящая из двух моносахаридов. К ним относятся лактоза, сахароза и мальтоза. Это плотные сладкие кристаллические вещества.
- Полисахариды состоят из наибольшего числа моносахаридов. В отличие от олигосахаридов и моносахаридов, многие полимеры не растворяются в воде и выполняют резервную, структурную функции в организме. Примеры полисахаридов: крахмал, гликоген, инулин, хитин, пектины, целлюлоза и арабиноксиланы.
Самые часто встречаемые в пище углеводы – это глюкоза, фруктоза, лактоза, крахмал и целлюлоза (клетчатка):
Название углевода | Источник и функции |
Глюкоза | Самая малая и распространенная молекула сахаридов, по структуре моносахарид. Она мгновенно попадает в кровь и провоцирует всплеск инсулина, что опасно для людей, больных диабетом. |
Фруктоза | Углевод, получаемый из фруктов и овощей. Он имеет свою специфику, поскольку не вызывает резкого скачка глюкозы в крови и способен откладываться в виде печеночного гликогена и жировой ткани внутренних органов. |
Лактоза | Содержится в молоке млекопитающих и в производимых из него продуктах. Молочный сахар – 1 из первых компонентов, попадающих в организм ребенка. Он отвечает за рост и развитие малыша. У людей, страдающих непереносимостью лактозы, отсутствует фермент, способствующий перевариванию и усвоению молока. |
Крахмал | Можно найти в картофеле, кукурузе, рисе и муке. Этот углевод обладает способностью набухать в горячей воде, но не растворяется в холодной. Безвкусен, имеет консистенцию белого порошка. Крахмал выполняет резервную и структурную функции в организме человека. |
Целлюлоза | Компонент клеточных мембран растений. Она не имеет ни вкуса, ни запаха, но положительно сказывается на функционировании органов пищеварения. Ее используют в фармацевтике в качестве наполнителя таблеток. Приверженцы здорового образа жизни стараются увеличить содержание клетчатки в своем рационе, употребляя больше зеленых овощей, цельных круп и несладких фруктов. |
У целлюлозы есть «двойник» – туницин, найденный в 1845 гг. Карлом Эрнестом Шмидтом у простейших оболочников. Новые исследования показали, что он также находится в телах слизней, моллюсков и членистоногих животных.
В первую очередь, углеводы выполняют энергетическую функцию. Человек, как и любое другое существо, нуждается в энергии для полноценной жизнедеятельности. Энергия расходуется постоянно — во время работы, умственной активности и даже во сне.
Сахариды входят в структуру клеточных мембран и сложных молекул рибозы и дезоксирибозы, которые участвуют в построении ДНК.
Биосинтез и обмен углеводов
В отличие от растений, животные не могут синтезировать углеводы самостоятельно. Они вынуждены получать сахариды с пищей. Растения, в свою очередь, образуют углеводы путем фотосинтеза с помощью хлоропластов из углерода, воды и солнечной энергии.
Переваривание углеводов в ЖКТ
Травоядные животные получают крахмал, сахарозу и клетчатку из растений и запасают гликоген, который потребляют хищники.
Этапы пищеварения. Всасывание и расщепление углеводов
Протяженность желудочно-кишечного тракта у человека составляет примерно 5-6 метров. Каждый этап пищеварения в организме специфичен и выполняет жизненно важные функции. Его строение на всей протяженности длине однотипно, имеет 3 наружный, средний и внутренний слои.
В процессе пищеварения участвуют особые белковые молекулы – ферменты, выделяемые внутренним слоем ЖКТ. Каждый фермент расщепляет определенный компонент пищи – белки, жиры и углеводы.
Особенности процесса пищеварения в ротовой полости
От тщательного пережевывания пищи зависит ее усвояемость. В ротовой полости еда механически и химически обрабатывается. За механическое измельчение отвечают зубы. За химическую обработку – слюна. Помимо того, в ротовой полости проходит вкусовой анализ и обеззараживание пищи.
В слюне содержатся ферменты, расщепляющие крахмал и гликоген до олигосахаридов. А-амилаза и мальтаза (ферменты) действуют и при попадании пищевого комка в желудок. Причем, состав слюны зависит от вида питания.
От горьких, кислых или несъедобных веществ вырабатывается наибольшее количество слюны. Если пища твердая и сухая, то слюна более вязкая. После глотания пищевой комок попадает в пищевод и желудок, где продолжается его обработка и расщепление компонентов.
Процессы пищеварения в желудке. Пищеварительные ферменты. Перистальтика
Желудок является отделом ЖКТ, где пища перемешивается с желудочным соком, соляной кислотой и ферментами, механически обрабатывается рефлекторными сокращениями стенок. Здесь преобладает кислотная среда во время трапезы, после чего она сменяется на слабощелочную.
Обычно пища пребывает в желудке 6-10 часов, в зависимости от состава. Общая длительность переваривания углеводов в ЖКТ составляет от 20 до 40 мин., белковой пищи – до 2 часов, чистых жиров – до 3-4 ч. Стоит учитывать, что это время переваривания чистых нутриентов.
Смешанная пища проходит этот путь дольше. Жидкость переходит в тонкую кишку сразу после поступления в желудок.
Соляная кислота, отвечающая за кислотную среду в желудке, вызывает денатурацию белков и активирует ферменты. Помимо того, она выполняет защитную, регуляторную в отношении моторики желудка и 12-перстной кишки и стимулирующую секрецию функции.
Таким образом, в желудке протекают процессы механической, химической обработки и незначительное всасывание углеводов.
В течение 2-3 мин. после приема пищи наступает релаксация желудка – стенки расслабляются, что помогает депонировать пищевой комок и стимулировать секрецию желудочного сока. Перистальтические сокращения сокращаются три раза в минуту.
Ферменты желудка – пепсин, химозин, липаза, содержащиеся в желудочном соке. Пепсин и химозин специализируются на расщеплении белковых структур. Липаза – слабый фермент, действующий на жиры.
Интересный факт: активность ферментов зависит от типа питания. Например, у народов далекого Севера, активность липазы намного выше, чем у европейских рас.
Их рацион состоит из мяса и жира, поэтому в ходе эволюции организм приспособился получать необходимое количество энергии.
Как происходит пищеварение в тонком кишечнике
Химус движется по тонкой кишке и обрабатывается кишечным соком. Здесь соединения олигосахаридов, белков и жиров распадаются до конечных продуктов. Ферменты олиго- и дисахаридаза, отвечающие за обработку углеводов, весьма немногочисленны, но очень эффективны.
Пища попадает в тонкий кишечник в виде значительно переваренного продукта. Его обрабатывают более 20 ферментов. Моторика тонкой кишки обеспечивает продвижение пищевого комка по кишечнику.
Наибольшее значение имеет процесс всасывания в тонком кишечнике. После расщепления поступившие с пищей вещества с помощью специфичных клеток-ворсинок всасываются в стенки кишечника, направляясь в кровь и лимфу.
Функции печени, метаболизм углеводов
Печень выполняет как пищеварительные, так и непищеварительные функции. Во всех пищеварительных функциях печени участвует выделяемый ею секрет – желчь.
Печень поддерживает уровень глюкозы в пределах нормы. При повышении уровня сахара лишняя глюкоза конвертируется в гликоген. Если концентрация сахара снижается до пороговых значений, печень запускает реакции, направленные на распад гликогена и выброса глюкозы в кровь.
Важность желчного пузыря
Желчный пузырь является резервуаром для хранения желчи вне периода пищеварения. Здесь вещество концентрируется, густеет и приобретает коричневый цвет. Место для скопления желчи необходимо: она продуцируется непрерывно.
Когда пищевой комок достигает кишечника, желчный пузырь выбрасывает содержимое в кишку для последующего переваривания.
Особенности толстого кишечника
Толстый кишечник практически не участвует в обработке пищи. Однако, здесь тоже имеются ферменты и кишечный сок, облегчающий продвижение химуса.
Наибольшим значением обладает микрофлора кишечника. Бактерии делятся на группы, очень многочисленны и необходимы для нормального функционирования организма.
Главная микрофлора толстого кишечника – бифидобактерии, сопутствующая – лактобактерии и энтерококки, остаточная – дрожжи, аэробные бациллы и другие.
Бактерии вырабатывают ферменты, которые расщепляют клетчатку и остаточные после переваривания в тонкой кишке полимеры. Более того, нормальная микрофлора атакует патогенную, тем самым предотвращая многие инфекции. Синтез витаминов K и B1, B6 и B12 также заслуга микроорганизмов.
Депо гликогена
После переваривания углеводов в ЖКТ часть энергии запасается в виде гликогена. В печени взрослого человека количество гликогена достигает 100-150 г. По вместительности этого вещества клетки печени на первом месте. Всего в организме может храниться до 450 г гликогена.
Вторая «кладезь» гликогена – мышцы. Здесь его откладывается 200-300 г. Если быть точнее, энергия запасается не в мышечные волокна, а в питательной жидкости, которая их окружает.
Запасы расходуются на физическую активность. При интенсивной мышечной деятельности гликоген распадается и используется самими мышцами.
Анаболизм и катаболизм гликогена
Единство этих процессов обеспечивает поддержание уровня глюкозы в допустимых значениях. Количество печеночного гликогена зависит от рациона. Во время длительного голодания преобладает катаболизм, и концентрация гликогена снижается до нуля.
Гликогеногенез – синтез гликогена, требующий затрат энергии. Его начало приходится на 1-2 ч. после приема углеводной пищи. На самом деле, этот процесс протекает во всех тканях животных, но несущественно.
Регуляция метаболизма гликогена
Регуляция этих процессов осуществляется переключением. Причем регуляторами выступают гормоны инсулин, адреналин и глюкагон. Определенные концентрации гормонов вызывают включение или выключение соответствующего процесса.
Синтез инсулина регулируется уровнем сахара в крови. Чем выше уровень глюкозы – тем больше вырабатывается инсулина. Он и распределяет свободные моносахариды в жировую ткань и депо.
Глюкагон – гормон поджелудочной железы, который вырабатывается во время низкого уровня глюкозы в крови. Вместе с инсулином включает анаболизм гликогена.
Адреналин выделяется надпочечниками. Его синтез управляется нервной системой в стрессовых ситуациях. Адреналин запускает реакцию «бей или беги», что является сигналом для начала катаболизма гликогена.
Одновременный распад и синтез невозможен. Это приведет лишь к бесполезной трате энергии. Выработанный в процессе анаболизма гликоген тут же распадется под действием катаболизма.
Катаболизм глюкозы
Важнейший процесс расщепления глюкозы посредством воздействия ферментов и образования энергии, лактата, этанола и масляной кислоты. Является основным способом получения энергии.
Катаболизм включает в себя 2 стадии:
- Анаэробный гликолиз не требует кислорода и выделяет мало энергии, которая используется в основном скелетными мышцами на начальном этапе интенсивной работы.
- Аэробный гликолиз нуждается в кислороде. Результатом этого процесса являются углекислый газ и вода – конечные продукты окисления глюкозы.
Первый этап поставляет энергию мгновенно. Это очень актуально в стрессовых ситуациях. Следующий этап занимает некоторое время, но выделяет намного больше энергии.
Нарушение переваривания и всасывания углеводов
Встречаются патологии, нарушающие адекватное переваривание углеводов в ЖКТ. Такие нарушения ведут к сдвигам в работе всех систем органов человека. Подобные нарушения могут возникать вследствие врожденных особенностей. Могут иметь как наследственный, так и приобретенный характер.
За качественное переваривание компонентов пищи отвечают ферменты, поэтому нарушения в работе лактазы, а-амилазы и других представителей ферментной группы вызывают нарушения физического развития.
Приобретение нарушений в процессе пищеварения возникают при заболеваниях органов желудочно-кишечного тракта – колитах, гастритах, энтеритах и после операций.
Врожденной патологией является дефицит лактазы. Недостаточное количество фермента делает невозможным переваривание молочных продуктов. У больного наблюдается диарея, спазмы, метеоризм и рвота при употреблении продукции, содержащей молоко.
Нарушение метаболизма углеводов и связанные с ним заболевания
Расстройства углеводного обмена объединяют в несколько групп.
Хроническое снижение уровня сахара в крови ниже пороговых значений называется гипогликемией. Зачастую это заболевание связано с недостаточным потреблением углеводов. Также к гипогликемии склонны люди, страдающие от алкоголизма.
Диабет принято различать на 1 и 2 тип. За последние 18 лет в России выявлено 2,5 млн пациентов с этим диагнозом. На данный момент мире 454 млн страдают от инсулинорезистентности.
Заболевание напрямую связано с гормоном надпочечников – инсулином, который играет ключевую роль в транспортировке молекул глюкозы из крови к органам.
Диабет 1 типа чаще встречается у детей и провоцируется вирусными инфекциями. Уровень инсулина никогда не бывает повышенным, наблюдается абсолютный дефицит гормона. Больные нуждаются в лечении инсулином: обычно он вводится внутривенно.
Сахарный диабет 2 типа не так опасен и вызван зачастую образом жизни человека. Нарушается эффективность или выработка инсулина – относительный дефицит гормона. Встречается в 90-95% среди всех больных диабетом.
Таким образом, причинами нарушений метаболизма углеводов можно считать как наследственные дефекты, так и сбои в функционировании печени и поджелудочной железы. Причинами могут стать опухоли, неправильное питание и стресс.
Инсулиновая и глюкагоновая реакция
В ответ на переваривание углеводов в ЖКТ организм запускает 2 реакции. После любого приема пищи, зачастую даже не содержащего много углеводов, надпочечниками вырабатывается инсулин. Его задача: регулировать концентрацию глюкозы и вязкость крови.
В первую очередь, сахариды направляются в печень и скелетные мышцы для пополнения депо. Если депо заполнено, то энергия конвертируется в жировую ткань. Относится инсулин к анаболическим гормонам.
Глюкагон решает, нужно ли печени задействовать внутренние резервы. Он тоже вырабатывается поджелудочной железой и является пептидным гормоном.
Если инсулин запасает энергию, то глюкагон активирует расщепление жиров, резервов в печени и конвертирование жирных кислот в кетоны, которые также являются энергией.
Действие глюкагона подобно адреналину: высвобождается глюкоза для быстрой реакции организма, увеличивается частота и сила сердцебиения, а также повышается артериальное давление.
Лечение нарушений углеводного обмена
В зависимости от типа расстройства, применяют соответствующий метод лечения:
- Медикаментозное – препараты, снижающие концентрацию глюкозы в крови.
- Инсулинотерапия – препараты, содержащие инсулин.
- Коррекция питания – включает в себя разработку индивидуального плана в зависимости от типа нарушений и особенностей организма; зачастую базируется на уменьшении калорий и увеличении клетчатки. Используется дробное питание. В редких случаях, наоборот, интервальное голодание.
- Физические нагрузки – тренировки и упражнения разной интенсивности.
Современная медицина способна замещать недостаток ферментов искусственно. Это таблетки и вещества, вводящиеся орально и внутривенно. Минус такого лечения – стоимость. Для лечения недостатка ферментов часто используется диета.
Как улучшить процесс пищеварения
Правильное питание способствует эффективному пищеварению и улучшению общего самочувствия.
Человек может улучшить пищеварение, соблюдая рекомендации диетологов:
- Потребление натуральной пищи существенно снижает вероятность заболевания обмена веществ. Дело в том, что рацион западного современного человека содержит большое количество рафинированных углеводов, которые быстро всасываются и повышают уровень глюкозы крови. Высокая концентрация насыщенных и транс-жиров не менее плачевно сказывается на метаболизме.
- Увеличение количества клетчатки способствует размножению нормальной микрофлоры в толстом кишечнике. Помимо того, пищевые волокна очищают ЖКТ, замедляют всасывание жирных кислот и быстрых углеводов.
- Растительные жиры – прекрасный источник калорий, макро- и микронутриентов. Жиры, в отличие от углеводов, вызывают насыщение, облегчают запоры. Многие гормоны имеют основу, состоящую из жирных кислот. Натуральные растительные жиры являются структурной единицей гормонов, ферментов и оболочки, покрывающей нервные клетки.
- Вода очень важна в процессе пищеварения. Источниками жидкости могут быть овощи, фрукты и напитки. Несмотря на распространенное мнение о том, что чай и кофе не являются источниками жидкости – на 99% эти продукты состоят из жидкости.
- Жевание является первым этапом пищеварения. Тщательно пережеванная пища намного легче усваивается. Выделяемая в процессе пережевывания слюна размягчает пищевой комок и снижает кислотность, предотвращает диспепсию и изжогу.
- Движение – жизнь. Физические нагрузки способствуют циркуляции крови, ускорению метаболизма, эффективности эндокринной, сердечно-сосудистой и нервной систем.
Продукты, необходимые для правильного пищеварения
Соблюдение правильно составленного рациона и периодических тренировок заметно улучшает переваривание, и способствует ускорению метаболизма. Здесь важно не впадать в крайности: нельзя питаться лишь углеводами или, наоборот, в корне урезать их количество в рационе.
В этом случае могут возникнуть проблемы с нормальным функционированием ЖКТ. Нужно найти баланс макронутриентов с учетом особенностей организма. В этом помогут формулы расчета КБЖУ.
Автор: Свиткевич Юлия Вячеславовна
Видео о переваривании углеводов
Как усваиваются углеводы:
Источник