Кишечная бактерия устойчивая к антибиотикам

Опубликован список из 12 бактерий, устойчивых к действию большинства антибиотиков
В конце февраля 2017 г. Всемирная организация здравоохранения впервые опубликовала список бактерий с уже выработанной или растущей устойчивостью к действию большинства антибиотиков. Задача публикации — стимулировать на государственном уровне поиск новых лекарственных препаратов против перечисленных возбудителей, «представляющих наибольшую угрозу для здоровья человека». Включенные в список бактерии разделены на три группы по приоритетности в плане поиска новых антибиотиков.
Критически высокий уровень приоритетности
- Acinetobacter baumannii
- Pseudomonas aeruginosa
- Enterobacteriaceae
Рейтинг бактерий, устойчивых к антибиотикам, заслуженно возглавляют грамотрицательные микроорганизмы — возбудители большинства нозокомиальных (внутрибольничных) инфекций в отделениях реанимации и интенсивной терапии, гнойной хирургии и онкологии. Вызывают инфекции кожи и мягких тканей, ЖКТ, мочевыводящих путей, раневые, эндокардит, менингит, остеомиелит. У ослабленных пациентов особое значение имеют инфекции кровотока и ИВЛ-ассоциированная пневмония. Для бактерий этой группы практически не осталось антибиотиков резерва.
Acinetobacter baumannii
«Природное» местообитание A. baumannii не установлено, однако этих бактерий обнаруживают в стационарах по всему миру. Вызывает до 1 % всех нозокомиальных инфекций, с уровнем смертности от 8 до 35 %. A. baumannii резистентна к пенициллинам, цефалоспоринам, аминогликозидам, хинолонам и тетрациклину. Отмечено значительное увеличение резистентности к карбапенемам — более 50 % в отдельных странах. Выявлены случаи резистентности к «последнему резерву» антибактериальной терапии, полимиксинам, ранее широко не использовавшимся из‑за высокой нефротоксичности.
В терапии карбапенем-резистентной A. baumannii относительно эффективны комбинации антибиотиков: полимиксин Е + рифампицин/карбапенемы/хинолоны/цефепим/ампициллин-сульбактам/пиперациллин-тазобактам.
Pseudomonas aeruginosa
Синегнойная палочка распространена повсеместно, встречается в почве и воде, на/в растениях, животных, людях. Вызывает до 20 % нозокомиальных инфекций. Чувствительность к антибактериальной терапии очень сильно варьирует. В тяжелых случаях отмечается развитие резистентности к ранее высокоэффективным цефалоспоринам, фторхинолонам, карбапенемам, аминогликозидам, азтреонаму, пиперациллину-тазобактаму. Сохраняется чувствительность к полимиксину Е, а также комбинациям антибиотиков.
Смертность при развитии инфекций, вызванных мультирезистентной P. aeruginosa, варьирует от 5 до 50 %, в зависимости от состояния пациента и локализации процесса.
Enterobacteriaceae
Из большого семейства энтеробактерий основные проблемы в стационарах доставляют Klebsiella, Escherichia coli, Citrobacter, Salmonella, Enterobacter, Serratia, Proteus. Вызывает опасения растущее повсеместное снижение чувствительности семейства к карбапенемам. Описаны единичные случаи резистентности E. coli ко всем существующим антибиотикам, включая полимиксин Е.
Высокий уровень приоритетности
- Enterococcus faecium
- Staphylococcus aureus
- Helicobacter pylori
- Campylobacter spp.
- Salmonellae
- Neisseria gonorrhoeae
Бактерии второй группы объединены по признаку повсеместного распространения, высокой социально-экономической значимости вызываемых ими заболеваний и быстрого развития резистентности к основным антибиотикам, используемым для их эрадикации, однако в резерве еще остается один или несколько эффективных препаратов.
Enterococcus faecium
E. faecium входит в состав нормальной микрофлоры кишечника, но в то же время является условно-патогенным микроорганизмом. У ослабленных больных может вызывать инфекции мочевыводящих путей, раневую инфекцию, сепсис и эндокардит. Резистентен к аминогликозидам, пенициллинам и цефалоспоринам. Беспокойство вызывает снижение чувствительности к ванкомицину — до 72 % в отдельных популяциях. Большинство штаммов E. faecium чувствительны к линезолиду, тигециклину, даптомицину.
Staphylococcus aureus
Золотистый стафилококк, колонизирующий кожу и слизистые оболочки, способен вызывать тяжелые инфекции кожи и мягких тканей, респираторные, раневые инфекции, остеомиелит, сепсис, артрит, эндокардит. Недавнее появление и распространение ванкомицин- и гликопептид-резистентных штаммов в дополнение метициллин-резистентному S. aureus значительно сужает выбор антибактериальных препаратов, однако у возбудителя сохраняется чувствительность к аминогликозидам, эритромицину, тетрациклину, ко-тримоксазолу, линезолиду.
Helicobacter pylori
Тревогу ВОЗ вызывает увеличение случаев резистентности всем известной H. pylori к кларитромицину, что сказывается на эффективности традиционных схем эрадикационной терапии, в том числе и в России. Перед эрадикацией ВОЗ рекомендует проверить чувствительность бактерии к этому антибиотику, при выявлении устойчивости — использовать схемы без него — с метронидазолом, тетрациклином или рифаксимином, а также добавлять висмута трикалия дицитрат.
Campylobacter spp.
Бактерии рода Campylobacter удерживают первое место в мире по гастроэнтеритам, которые у большинства населения планеты протекают в легкой форме, но представляют опасность для маленьких детей, беременных, стариков и иммунокомпрометированных больных. В большинстве случаев достаточно регидратации и восстановления электролитного баланса, антибактериальную терапию назначают при тяжелом течении. Проблемой является резистентность Campylobacter к фторхинолонам, основному средству борьбы с кишечной микрофлорой, и макролидам. Устойчивость к этим препаратам, впрочем, сильно варьирует от страны к стране — от менее 5 % в Финляндии до более 90 % в Индии. В Европе и России эритромицин всё еще остается препаратом выбора. По данным микробилогических исследований, в России также еще вполне актуальны фторхинолоны. В запасе для особо тяжелых случаев с осложнениями — гентамицин и карбапенемы.
Salmonellae
Представители рода сальмонелл также вызывают набор кишечных инфекций, от легкого энтерита до брюшного тифа. Большинство этих бактерий уже резистентны к бета-лактамам, аминогликозидам, тетрациклинам, хлорамфениколу и ко-тримоксазолу. Устойчивость к фторхинолонам растет во всем мире, но пока не привела к полной бесполезности этих препаратов, они остаются антибиотиками выбора, наравне с макролидами и цефалоспоринами третьего поколения. Антибактериальной терапии требуют только тяжелые случаи кишечных инфекций и, конечно, брюшной тиф и паратифы.
Neisseria gonorrhoeae
Гонорея из неприятной, но относительно легко излечимой болезни эволюционировала в глобальную медицинскую проблему. Гонококк потерял чувствительность к пенициллинам, тетрациклинам, сульфаниламидам и фторхинолонам.
Особое опасение вызывает появление и постепенное распространение штаммов, резистентных к цефалоспоринам (цефтриаксону), долгое время служивших безотказным средством борьбы с этой инфекцией. При резистентной к стандартным схемам лечения гонорее рекомендовано использовать комбинацию азитромицина с высокими дозами цефтриаксона. В России гонококк также практически резистентен к фторхинолонам, но пока сохраняет 100 %-ную чувствительность к цефтриаксону.
Средний уровень приоритетности
- Streptococcus pneumoniae
- Haemophilus influenzae
- Shigella spp.
Третью группу также представляют широко распространенные бактерии, чья устойчивость к «обычным» антибиотикам пока не приняла угрожающих масштабов, однако чревата большими проблемами в будущем.
Streptococcus pneumoniae
Пневмококки — одни из основных возбудителей инфекций ЛОР-органов, внебольничной пневмонии, менингита. Резистентны к тетрациклину и ко-тримоксазолу. В мире постепенно снижается чувствительность S. pneumoniae к бета-лактамам и макролидам, однако, как и в других случаях, доля резистентных штаммов сильно варьирует от страны к стране. В России большинство штаммов пневмококков, к счастью, всё еще чувствительны к пенициллинам и макролидам, также эффективны хлорамфеникол, рифампицин, левофлоксацин, ванкомицин.
Haemophilus influenzae
Гемофильная инфекция у детей младшего возраста протекает в виде бактериемии, гнойного менингита, пневмонии, целлюлита и эпиглоттита, у взрослых — в основном в виде пневмонии. Тревогу ВОЗ вызывает развитие полной резистентности гемофильной палочки к ранее эффективному ампициллину, в результате чего от него пришлось повсеместно отказаться. В России эффективны амоксициллин, цефалоспорины и макролиды, однако рекомендуется проводить бактериологический анализ с оценкой резистентности.
Shigella spp.
Возбудители дизентерии практически не чувствительны к ампициллину. Как и прочие энтеробактерии, они также постепенно вырабатывают устойчивость к фторхинолонам, которые тем не менее всё еще остаются препаратами выбора. В качестве альтернативы — цефалоспорины III поколения, ко-тримоксазол.
Итого
Появление устойчивых к антибиотикам бактерий и публикация этого списка в очередной раз привлекают внимание человечества к необходимости создания — в идеале — принципиально новых средств борьбы с микроорганизмами, иначе, по пессимистичным прогнозам, из-за появления бактерий, устойчивых к антибиотикам, через несколько десятилетий одна только послеоперационная летальность может скатиться до уровня начала прошлого века. Разработка таких препаратов — занятие неблагодарное, поэтому фармацевтические компании не стремятся развивать данное направление, и ВОЗ выносит проблему на межгосударственный уровень.
Проблема лекарственной устойчивости среди возбудителей нозокомиальных инфекций — первые пять бактерий списка — актуальна и для российского здравоохранения. Остальные перечисленные микроорганизмы, по данным российских исследований, на территории РФ в целом сохраняют чувствительность к «своим» антибиотикам. Тем не менее, учитывая возросшую мобильность населения, можно ожидать завоза и распространения резистентных штаммов.
Сводная таблица: чувствительность возбудителей к антибактериальной терапии
Возбудитель | Чувствительность к антибактериальной терапии | ||
Нет или в большинстве случаев утеряна | Снижается | В основном сохранена | |
Acinetobacter baumannii | Пенициллины, цефалоспорины, аминогликозиды, тетрациклин, хинолоны, азтреонам, пиперациллин-тазобактам | Карбапенемы, полимиксин Е | Комбинации: |
Pseudomonas aeruginosa | Пенициллины, цефалоспорины, аминогликозиды, тетрациклин, хинолоны | Карбапенемы | Полимиксин Е, |
Enterobacteriaceae (госпитальные штаммы Klebsiella, Escherichia coli, Citrobacter, Enterobacter, Serratia, Proteus) | Пенициллины, цефалоспорины, тетрациклин, хинолоны | Карбапенемы, аминогликозиды. | Полимиксин Е, |
Enterococcus faecium | Пенициллины, цефалоспорины, аминогликозиды | Ванкомицин | Линезолид, тигециклин, даптомицин |
Staphylococcus aureus | Пенициллины, цефалоспорины | Защищенные бета-лактамы, | Пенициллины, цефалоспорины |
Helicobacter pylori | Кларитромицин, метронидазол | В составе комбинированной терапии с ИПП и висмута трикалия дицитратом: амоксициллин, тетрациклин, рифаксимин | |
Campylobacter spp. | Пенициллины, цефалоспорины, аминогликозиды, тетрациклины. | Фторхинолоны, макролиды | Гентамицин, карбапенемы. |
Salmonellae | Пенициллины, цефалоспорины, аминогликозиды, тетрациклины, хлорамфеникол, ко-тримоксазол | Фторхинолоны | Фторхинолоны, макролиды, цефалоспорины III-IV пок., карбапенемы |
Neisseria gonorrhoeae | Пенициллины, тетрациклины, фторхинолоны, сульфаниламиды | Цефалоспорины | Азитромицин + цефтриаксон. |
Streptococcus pneumoniae | Тетрациклин, ко-тримоксазол | Пенициллины, цефалоспорины, макролиды | Хлорамфеникол, рифампицин, респираторные фторхинолоны, ванкомицин. |
Haemophilus influenzae | Ампициллин, ко-тримоксазол | Бета-лактамы (в отдельных случаях – защищенные), ко-тримоксазол, хлорамфеникол | Цефалоспорины III-IV пок., карбапенемы, хлорамфеникол, рифампицин |
Shigella spp. | Ампициллин, хлорамфеникол | Фторхинолоны | Цефалоспорины III-IV пок., аминогликозиды, ко-тримоксазол. |
Источники
- Сайт Всемирной организации здравоохранения.
- «Функциональная гастроэнтерология»
- Durante-Mangoni E., Zarrilli R. Global spread of drug-resistant Acinetobacter baumannii: molecular epidemiology and management of antimicrobial resistance // Future Microbiol. 2011; 6 (4):407–22.
- Partridge S. R. Resistance mechanisms in Enterobacteriaceae // Pathology. 2015; 47 (3): 276–84.
- Hooper D. C., Jacoby G. A. Mechanisms of drug resistance: quinolone resistance // Ann N Y Acad Sci. 2015;1354: 12-31.
Источник
Просто:
У одной американки с циститом обнаружили бактерию кишечную палочку, устойчивую к нескольким антибиотикам, в том числе к колистину.
Сложнее:
У патогенного штамма бактерии Escherichia coli, выделенного от пациента, обнаружена множественная лекарственная устойчивость, включая устойчивость к колистину, опосредованную геном устойчивости mcr-1. Таким образом, обнаружен супермикроб, устойчивый ко всем антибиотикам, обычно используемым для лечения инфекций, вызванных Escherichia coli. Ген mcr-1 находится на плазмиде — небольшой молекуле ДНК, способной размножаться внутри бактериальной клетки и передаваться от одной бактерии другой. Это означает, что плазмида с геном устойчивости к колистину сможет распространиться среди бактерий.
Просто:
Это такой популярный термин-страшилка для описания микробов, на которых не действуют сразу несколько антибиотиков, обычно используемых в клинической медицине. В науке супермикробы называются бактериями с «множественной лекарственной устойчивостью».
Сложнее:
Широкое применение антибиотиков приводит к отбору бактерий, несущих гены устойчивости к этим антибиотикам. Гены, обеспечивающие устойчивость к различным, неродственным антибиотикам, с течением времени «объединяются» (тоже в результате отбора) на конъюгативных плазмидах — автономных генетических элементах (молекулах ДНК), способных существовать в клетках бактерий разных видов и даже родов. За счет «горизонтального переноса» таких плазмид между различными бактериями множественная лекарственная устойчивость распространяется и становится повсеместной. Особенно часто встречаются супермикробы там, где антибиотики используются интенсивно, то есть в больницах. Супермикробы с плазмидами, несущими гены устойчивости к десятку антибиотиков, в нормальных условиях не имеют никакого преимущества перед обычными бактериями без таких плазмид. Даже наоборот — ведь для поддержания плазмид требуется затрата ресурсов. В госпитальных условиях, где концентрация антибиотиков высокая, бактерии с такими плазмидами получают преимущество и распространяются. С другой стороны, способность пациентов больниц сопротивляться инфекциям, как правило, снижена. Возникает парадоксальная ситуация: люди, проходящие лечение в стационарах, подвергают себя повышенному риску заболевания внутрибольничными инфекциями, которые сложно или невозможно вылечить.
3
Чем так важен антибиотик колистин?
Просто:
Колистин — один из антибиотиков «последнего ряда защиты», он (пока еще) действует на большинство сегодняшних супермикробов, но, к сожалению, приводит к ряду серьезных побочных эффектов.
Сложнее:
Колистин — один из самых старых антибиотиков. Он действует на клеточную стенку грамотрицательных бактерий (например, Acinetobacter baumannii и Klebsiella pneumoniae, ставших в последнее время серьезной проблемой). Подобно пенициллину, колистин поражает делящиеся клетки, которые синтезируют новую клеточную стенку. В те времена, когда устойчивость к антибиотикам не была глобальной проблемой, колистин не использовался, так как он вызывает серьезные осложнения (в основном на почки). Именно этот недостаток стал его достоинством — поскольку колистин не использовали, устойчивые к нему бактерии не отбирались. Сейчас — в условиях, когда ряд нозокомиальных инфекций оказывается устойчивым ко всем антибиотикам, — использование колистина оправданно, несмотря на побочные эффекты.
Просто:
Если найденная бактерия, на которую не действует колистин, широко распространится (до этого подобные бактерии обнаруживались в Китае и Европе), лечить некоторые бактериальные инфекции будет практически нечем. Люди, подхватившие такую бактерию, будут страдать, некоторые могут умереть, и врачи не смогут им помочь. Сомнений, что такая бактерия станет повсеместной, нет. Это только вопрос времени.
Сложнее:
В отличие от большинства других антибиотиков, устойчивость к колистину до сих пор встречалась относительно редко, у 1–2% патогенных или условно-патогенных бактерий, изолированных от сельскохозяйственных животных или найденных в пище. Из-за этого врачи часто применяли колистин для лечения бактериальных инфекций, которые не поддавались лечению другими антибиотиками. Обнаружение бактерий, несущих гены устойчивости к колистину, на плазмидах, способных к межвидовому переносу, означает, что широкое распространение лекарственной устойчивости к колистину — вопрос относительно недалекого будущего. Устойчивость к колистину у теперешних супермикробов сделает лечение многих бактериальных инфекций значительно более трудной, а в ряде случаев и невозможной задачей.
5
Получается, антибиотики скоро окажутся бесполезными?
Просто:
Да, это возможно. Чем больше мы используем известные антибиотики в медицине и сельском хозяйстве, тем чаще «возникают» (на самом деле отбираются — по механизму, описанному Дарвином) супермикробы. Новых антибиотиков мало, искать их сложно и дорого.
Сложнее:
Во-первых, население Земли стареет, все больше людей имеют пониженный иммунный статус. Во-вторых, патогенные бактерии приобрели высокую степень устойчивости к используемым антибиотикам, большинство из которых открыты в 1950–60-x годах. Сочетание двух этих факторов делает весьма вероятным, что, несмотря на прорывы в современной медицине, развитие методов геномного анализа, персонализированной медицины и прочего, через несколько десятков лет люди в развитых странах будут массово умирать от «тривиальных» болезней — например, от острых кишечных инфекций или пневмоний, вызванных бактериями с множественной лекарственной устойчивостью.
6
Можно ли как-то бороться с супермикробами?
Просто:
Можно, но это сложно. Принципиально есть два пути: стараться, чтобы супермикробы не появлялись (для этого надо контролировать прием антибиотиков и часто их менять), или искать новые антибиотики, которые бактерии еще «не знают» (для этого нужны деньги и, как это цинично ни звучит, рост смертности от заражения супермикробами в развитых странах).
Сложнее:
Устойчивость к антибиотикам будет возникать всегда: соответствующие гены предсуществуют у бактерий (в частности, у бактерий, которые производят антибиотики). Гены устойчивости распространяются на плазмидах по бактериальному сообществу вскоре после начала широкого применения «нового» антибиотика. Единственный способ контролировать ситуацию — вести широкий, систематический поиск новых антибактериальных веществ, к которым устойчивости еще нет, и выбирать те из них, которые могут быть использованы в качестве лекарств. Способы поиска антибиотиков, использовавшиеся в прошлом веке, основывались на культивации бактерий-продуцентов в лабораторных условиях. Они исчерпали себя, и найти новые антибиотики с использованием таких методов не удастся.
При этом развитие геномики и биоинформатики бактериальных сообществ показало, что в условиях лаборатории культивируется менее одного процента бактерий. Современные методы позволяют исследовать гены некультивируемого и невидимого бактериального большинства. Среди этих генов могут быть найдены и гены биосинтеза принципиально новых антибиотиков, которые будут действовать на сегодняшних супермикробов. Если это действительно так, эра антибиотиков продолжится (вернее, возникновение тотальной лекарственной устойчивости будет отсрочено).
Автор: Константин Северинов, доктор биологических наук, профессор Сколковского института науки и технологий
В материале использовано изображение Jeremie Sommet / Noun Project (CC BY 3.0 US)
Источник