Кишечная палочка и человек отношения симбиоза
Общепринятая на данный момент теория симбиогенеза предполагает, что митохондрии в эукариотических клетках произошли от симбиотических бактерий. Однако поиски предковой бактерии и реконструкция событий симбиогенеза еще далеки от завершения. Авторы новой статьи в журнале PNAS подошли к проблеме с другого конца: они смоделировали симбиогенез на примере хорошо изученной бактерии (Escherichia coli) и хорошо изученной эукариотической клетки (Saccharomyces cerevisiae). Теперь у нас есть отработанная методика получения химерных клеток, с помощью которой можно проверять, какие именно свойства предковой бактерии были необходимы для симбиогенеза.
Теория симбиогенеза была предложена в 1967 году. Согласно ей, археи и протеобактерии вступили в эндосимбиоз (первые тем или иным способом «поглотили» вторых), что привело к возникновению эукариот (см.: Теория симбиогенеза 50 лет спустя: параллельной эукариотизации, скорее всего, не было, «Элементы», 22.11.2017). За 50 лет удалось уточнить разные детали: судя по всему, эндосимбиоз с предками митохондрий произошел только один раз, а не в нескольких параллельных ветвях, и это стало конечным этапом в становлении эукариот (см.: Генеалогия белков свидетельствует о позднем приобретении митохондрий предками эукариот, «Элементы», 08.02.2016). Однако вопросов всё еще остается немало: например, что это была за предковая бактерия? Одна из распространенных точек зрения заключается в том, что изначально бактерии паразитировали на клетках архей, а потом паразитизм перешел в симбиоз. В таком случае, ближайшие родственники такой бактерии, известные нам, – это альфапротеобактерии риккетсии, внутриклеточные паразиты многих животных и человека (вызывают, например, эпидемический сыпной тиф и пятнистую лихорадку Скалистых гор).
Можно продолжать поиск родственников «с конца», то есть сравнивать геномы современных митохондрий с геномами различных бактерий и искать пересечения, а можно зайти «с начала» и попробовать воспроизвести эту предковую бактерию самим. Для этого нужно определить минимальный набор свойств, которыми она должна обладать для успешного внедрения внутрь археи. Заодно такой метод мог бы пролить свет на последовательность событий симбиогенеза. Но коль скоро мы не умеем создавать бактерии с нуля, можно модифицировать самую изученную бактерию на свете – кишечную палочку (Escherichia coli).
Общий принцип, которым руководствовались авторы эксперимента, можно сформулировать так: чтобы заставить две клетки вступить в симбиоз, нужно отобрать у них что-то жизненно важное, тогда их существование по отдельности станет невозможно (рис. 2).
Всю работу можно условно разделить на пять шагов.
Шаг 1 – лишить кишечную палочку самодостаточности. Чтобы эндосимбиоз оказался выгодным решением для бактерии, она должна стать ауксотрофом – быть неспособной производить какое-нибудь жизненно необходимое вещество. Для многих бактерий таким веществом является тиамин (витамин B1) – кофермент в реакциях углеводного обмена. Поэтому в геноме E. coli ген биосинтеза тиамина был заменен на кассету (см. Gene cassette) с GFP (зеленым флуоресцентным белком) и геном устойчивости к антибиотику канамицину. Теперь клетки не могут выживать без внешнего источника тиамина (который они сквозь мембрану закачивают внутрь), их можно отобрать под действием антибиотика и отследить во флуоресцентный микроскоп.
Шаг 2 – сделать кишечную палочку полезной. Авторы гипотезы происхождения митохондрии из внутриклеточных паразитов полагают, что одним из ключевых белков был АТФ/АДФ-антипортер (см. Antiporter). Это белок-переносчик, который обменивает АТФ на АДФ, меняя их местами по разные стороны мембраны. У паразитической бактерии он должен работать на благо бактерии: захватывать АТФ снаружи (то есть отбирать у клетки-хозяина) и менять на отработанные АДФ бактерии. Однако этот механизм можно заставить работать и в обратную сторону, если концентрации веществ поменяются местами. При этом бактерия начнет забирать АДФ из цитоплазмы хозяина и отдавать АТФ. Так или иначе, АДФ/АТФ-антипортеры есть как у современных митохондрий, так и у внутриклеточных паразитов. У свободно живущей кишечной палочки такого белка нет, поэтому пришлось снабдить клетки E. coli плазмидой с соответствующим геном.
Шаг 3 – лишить дрожжи самодостаточности. Чтобы заставить дрожжи вступить в симбиоз, их нужно лишить энергии, то есть АТФ. Тогда единственным выходом будет получить его от кишечной палочки. Но у дрожжей, как у почти всех эукариот, есть свои митохондрии. Поэтому авторы эксперимента взяли мутантный штамм дрожжей, лишенный одного из ключевых митохондриальных генов. Такие клетки содержат митохондрии, но не получают от них энергии. Они не могут расти в среде, где из питательных веществ есть только глицерин. Однако оказалось, что и в симбиоз с E. coli они тоже не вступают.
Шаг 4 – добавить «белки слияния». Эукариотическая клетка – это множество вложенных друг в друга мембранных пузырьков. Чтобы органеллы хаотично не сливались друг с другом, мембраны покрыты белками группы SNARЕ, которые могут стимулировать или блокировать слияние. Многие патогенные бактерии тоже несут SNARE-подобные белки. Клетка-хозяин воспринимает их как собственные органеллы и не переваривает (то есть с ними не сливаются лизосомы). Правда, мы пока не уверены в том, что к моменту эндосимбиоза эукариоты уже обладали системой этих белков. Но коль скоро мы работаем с дрожжами, приходится на нее ориентироваться. Авторы эксперимента ввели кишечной палочке гены трех разных SNARE-подобных белков, позаимствованных у хламидий. И только после этого они получили устойчивые колонии дрожжей с симбиотическими E. coli (рис. 3). Колонии росли на среде, богатой глицерином, лишенной тиамина и с добавлением антибиотика канамицина, – то есть удовлетворяли всем условиям эксперимента. В том же составе химерные клетки размножались в течение последующих трех дней культивирования, что соответствует примерно 40 делениям.
Шаг 5 – убрать лишнее. В ходе эволюции митохондрия утратила большую часть ДНК (у млекопитающих, например, в ее геноме осталось лишь 37 генов). Это значит, что она становилась всё более зависимой от своей клетки-хозяина. Авторы обсуждаемой статьи попробовали воспроизвести и этот этап тоже. Для этого они удалили у клеток кишечной палочки ген биосинтеза НАД+ – еще одного важного кофермента. Клетки, лишенные НАД+, так же как и их предшественники, лишенные тиамина, успешно образовывали химеры с дрожжами. И даже двойные мутанты, неспособные производить ни один из этих коферментов, также вступали в эндосимбиоз (рис. 4).
Перед нами – отработанная методика, с помощью которой можно моделировать ранние события эндосимбиоза. Клетки кишечной палочки, дефицитные по разным веществам, равно хорошо образуют химеры, которые воспроизводятся из поколения в поколение. Следующий шаг – поиск предельной редукции генома E. coli, возможной в данной ситуации. Авторы статьи отмечают, что удаление всего двух путей биосинтеза уже дало экономию в 7,7 тысяч пар нуклеотидов (для сравнения, весь митохондриальный геном человека составляет примерно 15 тысяч пар). Поэтому нам еще предстоит найти ту грань, на которой экономия размера генома столкнется с возможностью выживания клетки-симбионта.
Кроме того, как ехидно указывают авторы в конце текста, при таком раскладе не очень понятно, кто в этой истории настоящий паразит. Если бактерия, попавшая внутрь археи, лишь постепенно утрачивала свои метаболические пути, то возможно настоящим паразитом здесь стоит считать архею, которая потребляла энергию, производимую бактерией.
Источник: A. P. Mehta, L. Supekova, J.-H. Chen, K. Pestonjamasp, P. Webster, Y. Ko, S. C. Henderson, G. McDermott, F. Supeke, P. G. Schultz. Engineering yeast endosymbionts as a step toward the evolution of mitochondria // PNAS. a of October 29, 2018. DOI: 10.1073/pnas.1813143115.
Полина Лосева
Источник
Введение. Взаимодействие кишечной микрофлоры, иммунной системы хозяина и патогенных микроорганизмов позволяет рассматривать кишечник человека как сложную экосистему, где все компоненты играют определённую роль в модуляции друг друга и в поддержании гомеостаза, что имеет решающее значение для поддержания здоровья организма хозяина. Кишечные паразиты, как простейшие, так и гельминты, взаимодействуют с микрофлорой, изменяя баланс в сторону условно-патогенных микроорганизмов. Условно-патогенная микрофлора участвует в необходимых для выживания многих паразитарных инфекций процессах, например, в производстве питательных макромолекул. С этой позиции, пробиотики могут играть важную роль в снижении патогенности многих паразитов.
Всё это сыграло на возрастании интереса к изучению взаимодействия микрофлоры кишечника, кишечных паразитов, иммунного ответа и воспалительных процессов человеческого организма.
Кишечная микрофлора человека.
Кишечник человека представляет собой сложную экосистему находящегося во взаимосвязи с человеческим организмом большого микробного сообщества. У каждого человека уникальная, меняющаяся на протяжении жизни, видовая коллекция бактерий, обуславливающая вариабельность индивидуального видового состава. В развитии микрофлоры кишечника важную роль играют факторы окружающей среды и генетические особенности. Кишечная микрофлора человека способствует регуляции усвоения жира, стимулирует обновление кишечного эпителия и влияет на созревание иммунной системы. Кроме того, условно-патогенная микрофлора способствует «барьерному эффекту» кишечного эпителия, играющего первостепенную роль в защите организма хозяина от инвазии патогенных микроорганизмов.
В рамках этого сложного сценария кишечные паразиты взаимодействуют с микрофлорой кишечника, нарушая сбалансированную жизнедеятельность организма и кишечной микрофлоры. Продукты кишечных бактерий могут влиять на физиологические процессы и выживаемость многих паразитов и, следовательно, на исход паразитарных инфекций. С другой стороны, кишечные паразиты, как простейшие, так и гельминты, постоянно секретируют молекулы, которые приводят к изменению среды, соответственно, состава кишечной микрофлоры. Часть энергии, которая извлекается бактериям из питательных веществ, используется не только хозяином, но и паразитическими организмами.
Простейшие
В желудочно-кишечном тракте встречается довольно широкий спектр простейших. Это, отнюдь, не однородная группа, и их физиология и биохимия в значительной степени ориентирована на паразитизм. Эти микроорганизмы демонстрируют различные механизмы инвазии, некоторые из них внутриклеточные (Cryptosporidium SPP.), некоторые строго специализированы к одному хозяину (Entamoeba histolytica), а многие адаптированы к нескольким хозяевам (Giardia duodenalis). Какие-то виды способны нанести серьёзный ущерб организму, но большинство приводит к не очень специфической симптоматике, обычно, диарее за счёт повреждения стенки кишки.
Для исследования механизмов взаимодействия с кишечной микрофлорой моделью среди простейших стал один из наиболее распространенных патогенных желудочно-кишечных жгутиковых паразитов человека и многих животных – G. Duodenalis. Спектр клинических проявлений варьирует от лёгких саморазрешающихся форм заболевания, до острого или хронического поноса с потерей веса, а синдром мальабсорбции может длиться несколько месяцев. Кроме того, у инфицированных людей могут вообще отсутствовать какие-либо клинические проявления. Причины, определяющие изменчивость клинической картины, всё ещё плохо изучены.
Многочисленные исследования показали, что патогенность простейшего определяется веществами, выделяемыми паразитом, такими как нарушающие эпителиальный барьер протеиназы, а также воспалительными и иммунологическими реакциями организма хозяина. Распознавание простейшего, паразитирующего на поверхности слизистых оболочек, скорее всего, связано с врожденным иммунитетом, например, с Толл-подобными рецепторами (TLR). Кроме того, Т-клетки, в частности CD8+, макрофаги, нейтрофилы и антитела IgM, IgG, IgA, осуществляют приобретённый иммунный ответ, необходимый для разрешения многих протозойных инфекций, например, лямблиоза.
Протозойная инфекция и кишечная микрофлора
На основе мышиной модели было показано, что нормальная кишечная флора уменьшает восприимчивость к инфицированию Cryptosporidium parvum. Также было выявлено, что нормальная кишечная микрофлора улучшает распознавание и элиминацию кишечных простейших, таких как E. histolytica, Blastocystis hominis и различных видов Eimeria.
Были выдвинуты различные гипотезы для объяснения механизмов, реализующих взаимодействие простейших с бактериями.
Некоторые учёные связывают это с изменениями, наблюдаемыми у культивированных в стерильной среде простейших. При добавлении в среду внутриклеточных бактериальных симбионтов на мембране простейшего происходит изменение поверхностных гликопротеидных лигандов, что, вероятно, снижает их адгезивные и инвазивные способности.
Кроме того, при исследовании в мышиной модели лямблий, выявили эндосимбиотических микробов, которые могут влиять на патогенность трофозоита, его обменные процессы, площадь инфицирования, характеристику поверхностных антигенов и видоспецифичность. Совсем недавно было продемонстрировано, что наличие бактериальных эндосимбионтов в трофозоитах лямблий влияет на их восприимчивость к иммунной реакции. В эксперименте было обнаружено, что в непосредственной близости от активированных клеток Панета трофозоиты с эндосимбионтами лизировались. Это подтверждает защитную роль бактериальных эндосимбионтов хозяина и поддерживает идею, что микрофлора кишечника может прямо или косвенно вмешиваться в патогенез лямблиоза.
Не менее интересным фактом стало то, что некоторые представители кишечной микрофлоры могут повышать вирулентность простейших паразитов. Проведенные с E. histolytica эксперименты свидетельствуют, что взаимодействие низкой патогенности амёб с различными грамотрицательными бактериями, в основном энтеропатогенными штаммами кишечной палочки, увеличивает вирулентность амёб. In vitro цитопатический эффект энтамёбы увеличивает фагоцитоз E.coli или Shigella dysenteriae.
(Продолжение следует)
Federica Berrilli,David Di Cave, Serena Cavallero and Stefano D’Amelio. Interactions between parasites and microbial communities in the human gut. Frontiers in Cellular and Infection Microbiology. 2012 November 16
Материал подготовил Ильич Антон Владимирович
Источник
Загрузка…
Кишечная палочка является представителем нормального бактериального состава (микрофлоры) человеческого желудочно-кишечного тракта. Младенец получает эшерихию коли от мамы в момент рождения, а впоследствии размножается и сохраняется на протяжении всей жизни. В толстом отделе кишечника, где преимущественно локализуются эти бактерии, они выполняют несколько весьма важных функций: защита от патогенных и сдерживание роста условно-патогенных микроорганизмов; синтез витаминов К, В2, В3, В5, В6, В9, B12; расщепляют молочный сахар (лактозу); принимают участие в переваривании белков и углеводов; участвуют в переработке холестерина, желчных и жирных кислот; ассимилируют кислород, способствуя развитию лакто-и бифидобактерий, которые очень не любят этот газ. К слову, у детей до 1 года эшерихия коли в норме может встречаться даже во рту. Это связано со слабым развитием клапанного аппарата желудочно-кишечного тракта. Единичные экземпляры Escherichia coli находятся и во влагалище. Изменение количества кишечной палочки в сторону увеличения или уменьшения по сравнению с нормой (минимум – 106 , максимум – 108) расценивается как дисбактериоз первой степени. А одним из первых виновников дисбактериозов является снижение иммунитета, которое зачастую может быть спровоцировано нарушением нормальной микрофлоры. Ведь баланс микроорганизмов – как чаши весов. Уменьшается количество лакто-и бифидобактерий, увеличивается концентрация других микробов. Поэтому в лечении эшерихиозных дисбактериозов немаловажную роль играют пробиотики и препараты из молочнокислых бактерий.
Кишечная палочка e.coli
Помимо своих полезных свойств, эшерихии могут таить опасность для человека. Дело все в том, что вид Escherichia coli включает в себя множество разновидностей. Каждая эшерихия имеет антигены – капсульный, который обозначается буквой «К», соматический – «О», жгутиковый «Н». В советские времена и, по традиции, до сих пор на постсоветском пространстве разновидности (серовары) Escherichia coli принято обозначать по соматическому и капсульному антигену. Нарпимер, Escherichia coli О26 : К60, тогда как в западной систематике та же самая эшерихия будет обозначаться Е. coli О26 : Н2. Поэтому если вы сделали анализы на патогенные эшерихии в лабораториях России или Украины, а потом повторили их, допустим, в США, то результаты могут быть отображены по разному.
Наряду с большим количеством полезных для организма сероваров Escherichia coli существует около полутора сотен патогенных, которые могут вызывать заболевания. Мы говорим, что они «могут вызывать», поскольку их вредное влияние нейтрализуется иммунной системой и микрофлорой, если эти патогенные эшерихии находятся в кишечнике в небольших количествах. Человек может быть носителем патогенных эшерихий и даже не подозревать об этом, «награждая» инфекцией окружающих. Поэтому у нас принято перед приемом на работу и после приема, с определенной периодичностью, проверять работников отдельных коммунальных сфер на патогенные энтеробактерии, в том числе и на кишечную палочку. Делается это в целях профилактики вспышек эшерихиозов.
Патогенные E. coli подразделяют на 4 группы: энтеропатогенные (английское сокращение -EPEC), энетротоксигенные (ETEC), энтероинвазивные (EIEC) и энтерогеморрагические (EHECилиVTEC).
Энтеротоксигенные эшерихии колонизируют тонкий кишечник и вызывают холероподобные заболевания. Носительство после выздоровления не формируется. Чаще всего встречаются в Индии. У нас – в южных регионах. Источники заражения – пища и вода. Пик заболеваемости приходится на детей от года до трех лет. Заражающая доза – 108 – 109 бактерий, или иначе – колониеобразующих единиц (КОЕ), в 1г кала.
Кишечная палочка e.coli
Энтероинвазивные Escherichia coli, такие как О136, О159, О167, О28, О29, О112, О124 : Н30, О124 : Н32, имеют такой же фактор патогенности как у шигелл – бактерий, вызывающих дизентерию. Поэтому симптоматика заболевания напоминает дизентерию. У больного наблюдается непродолжительная водянистая диарея, которая к концу первых суток заканчивается «дизентерийным плевком» – комком слизи. В отличие от предыдущей группы, заболевание, вызванное энтероинвазивными E. coli характеризуется очень высокой температурой и продолжительностью (острый период – до двух недель). Встречаются EIEC повсеместно, заражение происходит также в основном через пищу и воду. Колонизируют толстый кишечник. Чаще всего болеют дети до 2-ух лет. Заражающая доза – 105 КОЕ в 1г кала.
Энтеропатогенные эшерихии вызывают инфекции, по симптоматике заболевания сходные с сальмонеллезом. Заражающая концентрация – от 105 до 1010 КОЕ/г. Дети чаще всего получают внутрибольничные штаммы EPEC, либо заражаются контактно-бытовым путем (полотенца, постельное белье). Взрослые приобретают энтеропатогенных эшерихий через продукты. В Соединенных Штатах Америки энтеропатогенные E. Coli стоят на первом месте среди кишечных заболеваний детей. Симптомы: водянистая диарея, тошнота, рвота. Заболевание длительное – до 15 дней. Может формироваться носительство после выздоровления.
Самая опасная, но, к счастью, наиболее редкая группа – энтерогеморрагические или веротоксические эшерихии. К ним относится пока одна серогруппа – О157:Н7. Открыты они были впервые в 80-ых годах и первая вспышка произошла в США (в доме престарелых, через плохо прожаренные гамбургеры). Потом – в Японии. Причем в одном офисном здании заболели практически 1000 человек (ели каракатиц, которые были выловлены в прибрежной зоне). На 30 лет человечество забыло об этом кошмаре, но в 2011 году Европу всколыхнула весть об эпидемии энтерогеморрагической Escherichia coli. Ходят слухи, что происхождение EHEC имеет искусственный характер (бакоружие или неудачные опыты по генной модификации), но это – всего лишь предположение. Фактор патогенности – шигеллоподобный токсин, который превосходит по токсичности шигеллезный в сотни раз. “Ареал обитания” – толстый кишечник. Клиническая картина при заболевании следующая: боли в животе, холероподобная диарея, которая в течение нескольких часов переходит в кровавый понос. Если нет острой почечной недостаточности, в комплексе с низким содержанием тромбоцитов и анемией (все это называется гемолитико-уремическим синдромом, или ГУС), то в течение одной – двух недель больного лечат детоксическими препаратами. Лечение антибиотиками категорически не рекомендуется!
Профилактика всех эшерихиозов: соблюдение гигиенических норм, таких как мытье рук, овощей и фруктов, причем желательно их термически обрабатывать (хотя бы ошпаривать); не есть из одной посуды с несколькими людьми; иметь личные предметы гигиены. Желательно также периодически принимать пробиотики (с предварительной консультацией у врача-гастроэнтеролога) для укрепления защитных сил организма.
Источник