Кишечная палочка на кровяном агаре
Эшерихии (кишечная палочка)
История открытия.
Впервые были выделены из кишечника ребенка и описаны в 1885 г. немецким врачом-педиатром Теодором Эшерихом.
Таксономия. Семейство | Enterobacteriaceae |
Триба | Escherichieae |
Род | Escherichia |
Виды | E. сoli и другие, всего 5 видов |
Морфология и тинкториальные свойства.
E. сoli представляют собой грамотрицательные прямые с закругленными концами палочки размером 0,4-0,-2-6 мкм, в мазках располагаются беспорядочно, подвижные (перетрихи), имеют микрокапсулу, пили I и II типов, спор не образуют.
Культуральные свойства.
E.сoli – факультативные анаэробы, хемоорганогетеротрофы. Не требовательны к условиям культивирования. Оптимальные условия культивирования: температура 37 С, рН 7,2-7,5, длительность культивирования – 24-48 часа. Хорошо растут на простых питательных средах (МПБ, МПА). В МПБ наблюдается рост в виде диффузного помутнения с последующим образованием осадка. На МПА образуют колонии в S-форме: слабовыпуклые полупрозрачные колонии с ровными краями и гладкой, блестящей поверхностью среднего размера. Возможен рост в R-форме (колонии с изрезанными краями, шероховатой поверхностью), иногда вырастают слизистые колонии (М-форма).
Дают характерный рост на дифференциально-диагностических средах: Эндо (малиновые колонии с металлическим блеском); Левина (темно-синие колонии с металлическим блеском), Плоскирева (розовые колонии с металлическим блеском), Ресселя и Олькеницкого. На кровяном агаре могут давать гемолиз.
Биохимические свойства.
E. сoli обладают высокой ферментативной активностью. Каталазоположительны и оксидазоотрицательны. Реакция Фогеса-Проскауэра отрицательная. Разлагают сахара (глюкозу, лактозу, маннит, арабинозу, сахарозу и др.) до кислоты и газа. Разложение лактозы до кислоты и газа является отличительным признаком эшерихий от других энтеробактерий. Восстанавливают нитраты в нитриты, образуют индол, аммиак, не продуцируют сероводород, не разжижают желатин.
Антигенная структура.
Антигенная структура сложная. Имеются О-, Н-, К- (L, В, А), М-антигены, фимбриальные, рибосомные и многие другие антигены. При сероидентификации наибольшее значение имеют О-, Н-, К- антигены.
* О – соматический антиген, липополисахарид клеточной стенки, термостабильный, спиртоустойчивый, групповой (?171 серогруппа).
* Н – жгутиковый антиген, белок флагеллин , типовой (более 57 серотипов).
* К – капсульный антиген , кислый полисахарид, тоже типовой (более 97 серотипов). К-антиген не однороден – в зависимости от устойчивости к температуре выделяют 3 его разновидности :
– L – термолабильный антиген (разрушается при нагревании до 600С);
– А – термостабильный (выдерживает 2-3-часовое кипячение);
– В – промежуточный по термолабильности между А и L (выдерживает нагревание до 60С в течение часа, но разрушается при кипячении).
Серовары эшерихий обозначают с указанием антигенной формулы: О26:К60: Н2…
Факторы патогенности.
1. Токсины:
* эндотоксин – оказывает на организм человека пирогенное и токсическое (снижение АД, нейротоксичность) действие, подавляет фагоцитоз;
* экзотоксины образуют некоторые штаммы кишечной палочки:
– энтеротоскин (ЭТКП);
– цитотоксин с гемолитическим и некротическим действием (ЭИКП, ЭГКП).
2. Структурные и химические компоненты клетки:
* пили I (адгезия) и II (конъюгация) типов;
* капсула и Т-белок клеточной стенки (адгезия, подавление фагоцитоза);
* плазмиды (у E. сoli обнаружены Col-, R-, F-, Hly-, Ent-плазмиды, а также плазмиды, кодирующие синтез факторов адгезии).
Резистентность.
E. сoli обладают хорошей выживаемостью во внешней среде, сохраняются в почве и воде несколько месяцев. При 56С гибнут в течении 1 часа, нагревание до 60С выдерживают не более 15-20 мин, при кипячении погибают мгновенно. Чувствительны к дезинфицирующим средствам и антибиотикам.
Экология и роль в патологии.
Различают условно-патогенные и диареегенные E. сoli.
Условно-патогенные E. сoli входят в состав микрофлоры кишечника человека, млекопитающих, птиц, рептилий и рыб. С испражнениями E. сoli выделяются в окружающую среду. Кишечная палочка является санитарно-показательным микроорганизмом, ее обнаружение свидетельствует о свежем фекальном загрязнении объектов внешней среды.
Условно-патогенные E. сoli вызывают эндогенные гнойно-воспалительные процессы различной локализации (инфекции мочевыводящих путей, нагноение ран, холецистит, аппендицит, перитонит, конъюктивит, отит, пневмонии, менингиты…) вплоть до сепсиса, чаще на фоне ИДС.
Диареегенные E. сoli являются возбудителями экзогенных инфекций – эшерихиозов (острые кишечные заболевания, протекающие по типу энтеритов и энтероколитов) и пищевые отравления.
Эпидемиология.
Заболевания, вызванные E. сoli, распространено повсеместно.
Источник инфекции: больные и бактерионосители.
Механизм передачи: фекально-оральный (пути: пищевой, контактно-бытовой и реже водный).
Патогенез и клинические проявления.
Диареегенные серовары кишечной палочки разделены на 5 групп:
* Энтеропатогенные (ЭПКП);
* Энтеротоксигенные (ЭТКП);
* Энтероинвазивные (ЭИКП);
* Энтерогеморрагические (ЭГКП);
* Энтероадгезивные (ЭАКП).
Кроме вышеперечисленных выделяют диффузноприлипаемые кишечные палочки (пока недостаточно изучены).
Морфологически представители разных групп не отличимы друг от друга; их дифференцируют по антигенной структуре и по факторам патогенности.
ЭПКП – вызывают эшерихиозы у детей до 1 года (чаще у детей, находящихся на искусственном вскармливании). Возбудители поражают эпителий тонкого кишечника: адсорбируясь на поверхности энтероцитов за счет белка наружной мембраны (интимина), размножаются здесь и повреждают микроворсинки, вызывая их отторжение. Развивающаяся при этом воспалительная реакция обусловлена действием эндотоскина, который освобождается при разрушении кишечных палочек. Основные клинические проявления: диарея, рвота, срыгивание пищи, признаки обезвоживания организма, гипотрофия. Течение болезни – тяжелое, может длиться неделями.
ЭТКП вызывают холероподобные заболевания у детей и взрослых. При помощи пилей они прикрепляются к эпителию нижних отделов тонкого кишечника, размножаются благодаря CF (фактор колонизации) и продуцируют 2 типа токсинов: LT (термолабильный, по механизму действия напоминает экзотоксин холерного вибриона) и ST (термостабильный). LT и ST увеличивают в клетках эпителия содержание цАМФ и цГМФ соответственно, что вызывает нарушение транспорта молекулярного железа и повышенному выходу воды из клеток. Это нарушает водно-солевой баланс в кишечнике и приводит к развитию водянистой диареи. Заболевание по характеру течения напоминает легкую форму холеры (в литературе его часто называют диареей путешественников).
ЭИКП вызывают дизентериеподобное заболевание у детей и взрослых. Адсорбируются на клетках эпителия нижних отделов толстой кишки, проникают внутрь клеток, размножаются, выделяют шигеллоподобный токсин и разрушают клетки. Распространяясь по межклеточным пространствам, они поражают соседние клетки, образуя язвы. Клинические симптомы: вначале – водянистая диарея, затем в испражнениях появляется примесь слизи и крови.
ЭГКП – возбудители геморрагической диареи и гемолитического уремического синдрома, поражая преимущественно детей. Возбудители выделяют шигелоподобный цитотоксин, вызывающий разрушение эндотелия сосудов (блокирует синтез белков на рибосомах) кишечника и почек, в результате чего развиваются ишемия и некроз клеток. Клинически наблюдается геморрагический колит (кровавый понос) и гемолитический уремический синдром (гемолитическая анемия и почечная недостаточность), которые протекают тяжело и нередко с летальным исходом.
ЭАКП (описаны в 1985 г.у) способны быстро прикрепляться к поверхности клеток и колонизировать разные отделы кишечника, но чаще поражают толстую кишку. Цитотоксинов они не образуют, в клетки не проникают. Клинически заболевание характеризуется упорным диарейным синдромом.
Иммунитет.
После перенесения эшерихиозов формируется гуморальный типоспецифический иммунитет, наблюдается выработка местного иммунитета (SIgA). Образующие антитела не обладают протективными свойствами.
У детей первого года жизни пассивный трансплацентарный иммунитет обеспечивается проходящими через плаценту антителам и антителам, поступающими с материнским молоком. Также с женским молоком передаются и мукополисахариды, способствующие размножению лакто- и бифидобактерий – антагонистов возбудителей эшерихиозов.
Микробиологическая диагностика.
Исследуемый материал: при кишечных эшерихиозах – испражнения, рвотные массы, у грудных детей мазки из зева, при эндогенной инфекции – материал из соответствующего очага (моча, отделяемое раны, кровь…).
1. Бактериоскопический метод.
2. Бактериологичекий метод (основной) – выделение чистой культуры возбудителя, ее идентификация, определение чувствительности к антибиотикам.
3. Серологический метод:
* РА с поли-(ОВ) и моновалентными агглютинирующими эшерихиозными сыворотками;
* ИФА;
* РИФ.
4. Молекулярно-биологический метод (ПЦР, ДНК-зонды).
Специфическая профилактика не разработана.
Неспецифическая профилактика: ранняя диагностика, изоляция больных, регулярное профилактическое обследование работников детских учреждений и ЛПУ. Большое значение имеет строгое соблюдение санэпидрежима в этих учреждениях.
Принципы терапии: диета, ХТП (нитрофураны, фторхинолоны), при генерализованных формах – антибиотики с учетом чувствительности, спецефическое лечение – коли-бактериофаг, лакто- и бифидосодержащие пробиотики.
Источник
План ответа макропрепарата.
- Название
- Ингредиенты
- Назначение
- Наблюдаемый результат
- Рост кишечных палочек на среде Эндо.
Среда Эндо – дифференциально-диагностическая среда. В составе среды: лактоза и индикатор кислотности – фуксин. Среда предназначена для выделения (преимущественно из кала и мочи) и дифференциации микроорганизмов семейства Enterobacteriaceae. Лактозопозитивные кишечные палочки, входящие в состав нормальной микрофлоры кишечника растут колониями малиново-красного цвета с металлическим блеском, так как расщепляют лактозу и изменяют рН среды. Лактозоотрицательные микроорганизмы (некоторые патогенные кишечные палочки, шигеллы, сальмонеллы) растут колониями белого или светло-розового цвета.
- Рост кишечных палочек и дизентерийных палочек на среде Плоскирева.
Среда Плоскирева – дифференциально-диагностическая среда. Это селективная среда для выделения шигелл и сальмонелл. Готовая среда прозрачна, имеет розовато-желтоватый цвет. Среда Плоскирева относится к плотным средам для выделения чистых культур. В состав среды Плоскирева входят ингибирующие вещества (желчные соли, бриллиантовый зеленый, йод), вследствие чего она должна полностью подавлять рост грамположительной флоры, значительно задерживать (первые 24 ч) рост эшерихий и другой сопутствующей микрофлоры, подавлять роение протея. Дифференцирующие свойства агара Плоскирева основаны на изменении рН в кислую сторону при росте лактозоферментирующих бактерий, которые образуют колонии брусничного цвета (индикатор нейтральный красный). Лактозоотрицательные бактерии вырастают в виде бесцветных или слабоокрашенных колоний.
Реакция непрямой (пассивной) гемагглютинации (РНГА).
Эта реакция относится к серологическим реакциям иммунитета между антигенами (АГ) и антителами (АТ). Детерминанта АГ связывается с активным центром АТ. Соединение АГ и АТ осуществляется посредством водородных и гидрофобных связей, взаимодействия ионов, кулоновских и ван-дер-вальсовых сил. Прочность соединения АГ с АТ обеспечивается не только силами связывания, но и оптимальной стерической адаптацией активного центра АТ к АГ-детерминанте.
Серологические реакции протекают в две фазы. Первая – специфическая невидимая, – заключается во взаимодействии АГ с АТ. Вторая фаза – видимая, – проявляется в зависимости от типа реакции, который определяется свойствами АГ, АТ и другими ингридиентами реакций.
Реакция непрямой гемагглютинации (РНГА; син. реакция пассивной гемагглютинации) – метод обнаружения и идентификации антигенов или антител, основанный на возникающем в их присутствии феномене агглютинации эритроцитов, на поверхности которых были предварительно адсорбированы соответствующие специфические антитела или антигены.
Серологический метод. Сыворотка крови обследуемого пациента (содержит неизвестные (искомые) АТ). Эритроцитарный диагностикум – содержит известный антиген, адсорбированный на поверхности эритроцита. Образование комплекса АГ-АТ влечет за собой и склеивание эритроцитов, что легко учитывать. Таким образом, эритроциты не участвуют непосредственно в образовании комплекса АГ-АТ, служат для укрупнения корпускула и соответственно являются индикаторами наличия комплекса АГ-АТ. РНГА более чувствительна, чем РА.
РНГА может использоваться как экспресс-метод, например при диагностике чумы или газовой гангрены. Ингредиенты: исследуемый материал – неизвестный АГ, диагностикум эритроцитарный антительный (содержит известные АТ адсорбированные на поверхности эритроцита). Образование комплекса АГ-АТ влечет за собой и склеивание эритроцитов, что легко учитывать.
Определения чувствительности бактерий к антибиотикам методом индикаторных дисков.
Важное значение в лечении и профилактике инфекционных заболеваний принадлежит химиотерапии и химиопрофилактике, эффективность которых в значительной степени зависит от чувствительности микроорганизмов к антимикробным препаратам. Среди химиотерапевтических средств, используемых для лечения больных с гнойно-септическими инфекциями, ведущее место занимают антибиотики.
Для определения чувствительности выделенных микроорганизмов к антибиотикам широко используется диско-диффузионный метод. Исследуемую культуру суспензируют в стерильном физиологическом растворе приготовляя 1-миллиардную взвесь по стандарту мутности. Бактериальную взвесь (1 мл) стерильной пипеткой наливают на поверхность плотной питательной среды в чашку Петри и равномерно распределяют шпателем. Избыток жидкости удаляют пипеткой. Шпатель и пипетки помещают в стакан с дезраствором. На засеянную поверхность стерильным пинцетом помещают на одинаковом расстоянии друг от друга и отступя 2 см от края чашки бумажные диски, содержащие определенные дозы разных антибиотиков. Посевы инкубируют при 37°С до следующего дня. По диаметру зон задержки роста исследуемой культуры бактерий судят о ее чувствительности к антибиотикам. Для получения достоверных результатов необходимо применять стандартные диски и питательные среды, для контроля которых используются эталонные штаммы соответствующих микроорганизмов. Метод дисков не дает надежных данных при определении чувствительности микроорганизмов к плохо диффундируюшим в агар полипептидным антибиотикам (например, полимиксин, ристомицин).
Персистентные свойства микроорганизмов – антилизоцимная активность (АЛА).
АЛА – секреторный фактор персистенции. Изучают АЛА по методике О.В. Бухарина с соавт. (1984). Для этого к 1,5% питательному агару добавляют различные дозы яичного лизоцима (от 1 до 5 мкг) и разливают в чашки Петри. После застывания среды на подсушенную поверхность наносят каплю 1 млрд. взвеси суточной агаровой культуры изучаемого микроорганизма. Чашки инкубируют в термостате при 370С 24 часа, после этого выросшие колонии подвергаются обработке парами хлороформа в течение 20 минут, затем наслаивается слой 0,7% питательного агара с 0,1 мл 1 млрд. взвеси суточной агаровой культуры Micrococcus luteus (lysodeikticus) АТСС 15307 (ГИСК им. Тарасевича) чувствительной к литическому действия лизоцима. Учет результатов проводится через 24 часа инкубации в термостате по наличию зоны роста микрококка вокруг тех штаммов, которые нейтрализуют внесенный в слой агара яичный лизоцим. Антилизоцимную активность выражают в мкг инактивированного в среде лизоцима.
На данной чашке видны колонии АЛА+ и АЛА- штаммов микроорганизмов. Над колониями АЛА+ штаммов есть рост микрококка в виде мелких желтых колоний.
Лизоцимная активность.
Лизоцим –термостабильный белок, фермент, разрушает клеточную стенку преимущественно грамположительных бактерий, разрывая β-гликозидные связи между аминосахарами пептидогликана, что способствует образованию протопластов с последующим их лизисом. Содержится во всех тканевых жидкостях, в лейкоцитах, макрофагах и других фагоцитирующих клетках. Продуцируется лизоцим преимущественно клетками моноцитарно/макрофагального ряда. Лизоцим усиливает антибактериальную активность комплекса антиген (микроб)-антитело-комплемент, способствуя лизису пептидогликана клеточной стенки бактерий. Помимо животного раличают растительный и микробный лизоцим.
Микробный лизоцимявляется одним из факторов колонизации. Лизоцимная активность (ЛА) определяется путем посева исследуемой культуры микроорганизма на питательную среду, содержащую 1 млрд. суспензию суточной агаровой культуры Micrococcus luteus (lysodeikticus) АТСС 15307 (ГИСК им. Тарасевича). Результат оценивается после инкубации при 370С в течение суток по зоне лизиса в толще среды индикаторного штамма микрококка вокруг изучаемых колоний.
Иммуноферментный метод
Иммуноферментный анализ (сокращённо ИФА, англ. enzyme-linked immunosorbent assay, ELISA) — лабораторный иммунологический метод качественного или количественного определения различных соединений, макромолекул, вирусов и пр., в основе которого лежит специфическая реакция антиген-антитело. Выявление образовавшегося комплекса проводят с использованием фермента в качестве метки для регистрации сигнала.
ИФА появился в середине 60-х годов и первоначально был разработан как метод для идентификации антигена в гистологическом препарате, а также для визуализации линий преципитации в тесте иммунодифузии и иммуноэлектрофореза, а затем стал использоваться для количественного определения антигенов и антител в биологических жидкостях. В разработке метода принимали участия Е. Энгвалл и Р. Пэлман, а также независимо от них В. Ван Вееман и Р. Шурс.
Метод основан на специфическом связывании антитела с антигеном, при этом один из компонентов конъюгирован с ферментом, в результате реакции с соответствующим хромогенным субстратом образовывается окрашенный продукт, количество которого можно определить спектрофотометрически.
Открытие возможности иммобилизации антигена и антитела на различных носителях с сохранением их связывающей активности позволило расширить использование ИФА в различных областях биологии и медицины.
Появление моноклональных антител послужило дальнейшему развитию ИФА, что позволило повысить его чувствительность, специфичность и воспроизводимость результатов.
Теоретически ИФА основывается на данных современной иммунохимии и химической энзимологии, знании физико-химических закономерностей реакции антиген-антитело, а также на главных принципах аналитической химии. Чувствительность ИФА и время его проведения определяется несколькими основными факторами: кинетическими, термодинамическими характеристиками реакции антиген-антитело, соотношением реагентов, активностью фермента и разрешающей способностью методов его детекции. В общем виде реакция антиген-антитело может быть описана простой схемой: [AT]+[АГ]↔[АТАГ]
Разнообразие объектов исследования от низкомолекулярных соединений до вирусов и бактерий, а также необычайно широкий круг задач, связанных с многообразием условий применения ИФА, обусловливают разработку чрезвычайно большого количество вариантов этого метода.
Любой вариант ИФА содержит 3 обязательные стадии:
1. стадия узнавания тестируемого соединения специфическим к нему антителом, что ведет к образованию иммунного комплекса;
2. стадия формирования связи конъюгата с иммунным комплексом или со свободными местами связывания;
3. стадия превращения ферментной метки в регистрируемый сигнал.
Принципальная схема иммуноферментного анализа для выявления АТ является следующей. Известный АГ (вирус, белок) – диагностикум фиксируется на твердой фазе. К нему добавляют сыворотку обследуемого с неизвестными АТ. После инкубации и промывки на антигене остаются специфичные к нему АТ, если таковые имелись в сыворотке обследуемого. Для обнаружения комплекса АГ-АТ, к нему добавляют кроличью антиглобулиновую сыворотку меченую ферментом (АГС-Ф). Для получения данной сыворотки иммунизируют кролика глобулинами человека. Полученную от кролика сыворотку метят каким-либо ферментом, например, пероксидазой хрена. Если в обследуемой сыворотке есть АТ к АГ (диагностикум), то они будут служить антигеном для антиглобулиновой сыворотки. После второй промывки образовавшийся комплекс АГ+АТ+АГС-Ф можно обнаружить, добавив субстрат на фермент (перекись водорода) и индикатор на продукты расщепления субстрата (хромоген на активные формы кислорода). Изменение цвета индикатора свидетельствует о наличии искомых АТ в сыворотке обследуемого.
Среда Китта-Тароцци.
Питательный бульон с глюкозой и кусочками свежих органов животных. Глюкоза и кусочки органов обладают редуцирующей способностью. Сверху среду заливают слоем стерильного масла, которые не пропускает кислород из воздуха в среду. В результате создаются условия для культивирования анаэробных микроорганизмов.
План ответа макропрепарата.
- Название
- Ингредиенты
- Назначение
- Наблюдаемый результат
- Рост кишечных палочек на среде Эндо.
Среда Эндо – дифференциально-диагностическая среда. В составе среды: лактоза и индикатор кислотности – фуксин. Среда предназначена для выделения (преимущественно из кала и мочи) и дифференциации микроорганизмов семейства Enterobacteriaceae. Лактозопозитивные кишечные палочки, входящие в состав нормальной микрофлоры кишечника растут колониями малиново-красного цвета с металлическим блеском, так как расщепляют лактозу и изменяют рН среды. Лактозоотрицательные микроорганизмы (некоторые патогенные кишечные палочки, шигеллы, сальмонеллы) растут колониями белого или светло-розового цвета.
- Рост кишечных палочек и дизентерийных палочек на среде Плоскирева.
Среда Плоскирева – дифференциально-диагностическая среда. Это селективная среда для выделения шигелл и сальмонелл. Готовая среда прозрачна, имеет розовато-желтоватый цвет. Среда Плоскирева относится к плотным средам для выделения чистых культур. В состав среды Плоскирева входят ингибирующие вещества (желчные соли, бриллиантовый зеленый, йод), вследствие чего она должна полностью подавлять рост грамположительной флоры, значительно задерживать (первые 24 ч) рост эшерихий и другой сопутствующей микрофлоры, подавлять роение протея. Дифференцирующие свойства агара Плоскирева основаны на изменении рН в кислую сторону при росте лактозоферментирующих бактерий, которые образуют колонии брусничного цвета (индикатор нейтральный красный). Лактозоотрицательные бактерии вырастают в виде бесцветных или слабоокрашенных колоний.
Рост стафилококка на кровяном агаре.
Кровяной агар (КА) – сложная плотная питательная среда для культивирования прихотливых видов микроорганизмов и выявления гемолизинов (определения у МО одного из факторов вирулентности – гемолитической активности). На 100 мл расплавленный и остуженный до 450С мясо-пептонный агар (МПА) добавляют 5 мл отмытых эритроцитов барана или эритроцитарной массы крови человека (I группы), аккуратно перемешивают, разливают в чашки Петри. На поверхность застывшего и подсушенного КА засевают чистую культуру исследуемых микроорганизмов, после суточной инкубации при 370С определяют зоны гемолиза вокруг выросших колоний. Зоны гемолиза виды в виде полного (β-гемолиз) или частичного (α-гемолиз) просветления вокруг колоний. На данной чашке видны колонии стафилококков бело-серого цвета с зонами полного просветления вокруг, что свидетельствует о наличии у этих микроорганизмов гемолитической активности.
4. Реакция преципитации в агаре для определения токсигенности дифтерийной палочки.
Реакция преципитации относится к реакции иммунитета между антигенами (АГ) и антителами (АТ). Детерминанта АГ связывается с активным центром АТ. Соединение АГ и АТ осуществляется посредством водородных и гидрофобных связей, взаимодействия ионов, кулоновских и ван-дер-вальсовых сил. Прочность соединения АГ с АТ обеспечивается не только силами связывания, но и оптимальной стерической адаптацией активного центра АТ к АГ-детерминанте.
Серологические реакции протекают в две фазы. Первая – специфическая невидимая, – заключается во взаимодействии АГ с АТ. Вторая фаза – видимая, – проявляется в зависимости от типа реакции, который определяется свойствами АГ, АТ и другими ингридиентами реакций. В реакции преципитации (РП) участвует растворенный антиген. При контакте с антителами – преципитинами образуется осадок. Реакцию преципитации можно проводить в жидкой среде (в пробирках) и в геле (в чашках Петри).
Одной из разновидностей РП в геле является реакция определения токсигенности дифтерийной палочки. Для этого в чашку Петри на питательную среду помещают полоску стерильной фильтровальной бумаги, пропитанную антитоксической противодифтерийной сывороткой. Эта сыворотка содержит АТ к дифтерийному токсину, получается путем иммунизации животного (кролика) анатоксинами (токсин лишенный вирулентности-токсигенности, но сохранивший иммуногенность-антигенность). Затем на плотнуб питательну среду в чашке высевают испытуемые культуры в виде пятачков на расстоянии 0,6-0,8 см от края фильтровальной бумаги. Чашки инкубируют при 370С в течение суток. При наличии токсигенной культуры в месте взаимодействия токсина с антитоксином образуются линии преципитации в виде дуг. Дуга – это визуальное отображение взаимодействия АТ диффундирующих из фильтровальной бумаги и АГ – экзотоксинов, выделяемых токсигенными культурами.
Источник