Микроскоп для кишечной палочки

Микроскоп для кишечной палочки thumbnail

Скромная бактерия за полстолетия с момента ее открытия в конце XIX в. стала настоящей волшебной палочкой для молекулярной биологии. Сейчас результаты опытов с ее использованием занимают главы и тома профессиональных и популярных изданий. Конечно, в нашем путеводителе по модельным организмам E. coli должна была занять свое почетное место.

Микроскоп для кишечной палочки

Двенадцать модельных организмов

Привет! Меня зовут Сергей Мошковский. Дорогая редакция «Биомолекулы», выпустив настенный календарь о модельных организмах на 2020 год, заказала было мне лонгрид, который должен был, как суровый конвой, сопровождать календарь на сайте. Минутная слабость — сколько их было в жизни! — и я уже соглашаюсь. Но как писать? Ведь о каждой модельной скотинке, нарисованной на календаре, — как и о нескольких десятках не поместившихся туда, — написаны тома научной и даже популярной литературы. Придется писать не по-журналистски, из головы — как бы не вышло чего-то вроде поэмы «Москва — Петушки», где вместо станций — модельные организмы. Я и еще несколько авторов представляем вам на суд собранье пестрых глав — они будут выходить в течение всего 2020 года. Читатель, прости! Ты знаешь, кого за это винить!

Escherichia и Eschrichtius — Болезнь путешественников — Главная модельная бактерия — Учебник молекулярной генетики — Невезение с CRISPR/Cas

Кишечная палочка — один из первых мемов, с которым сталкиваются дети при знакомстве с биологией (рис. 1а). Запоминающееся, простое и забавное название. Помню, как узнал в детстве, что эта палочка может быть опасной — кто-то мучился животом, а родители сказали, что, наверное, кишечная палочка! Позже, уже в старшей школе, я узнал латинское название этой бактерии, и оно меня удивило, оказавшись каким-то не очень латинским. Оказывается, австрийский педиатр Теодор Эшерих (рис. 1б), который впервые выделил эту палочку из содержимого кишечника в 1885 году, вначале назвал ее благозвучно — Bacterium coli, что означает просто «кишечная бактерия». После ожидаемого пересмотра классификации бактерий род переименовали в честь первооткрывателя. По анекдотическому совпадению очень созвучно — Eschrichtius — называется одно из самых крупных существ на земле — серый кит (рис. 1в). Правда, этого гиганта так назвали в честь другого ученого — датского зоолога Даниэля Эшрихта, работавшего на полвека раньше (рис. 1г). В этом плане другой важной палочке — сенной — повезло больше, поскольку она до сих пор называется Bacillus subtilis, что в переводе — тонкая палочка.

Escherichia

Рисунок 1а. Escherichia длиной 2 мкм

Теодор Эшерих

Рисунок 1б. Теодор Эшерих (1857–1911)

Eschrichtius

Рисунок 1в. Eschrichtius длиной 14 метров

Даниэль Фредрик Эшрихт

Рисунок 1г. Даниэль Фредрик Эшрихт (1798–1863)

Кишечная палочка живет… правильно, в кишечнике человека, составляя по численности не более 0,1% нормальной микрофлоры. Как и многие микроорганизмы, эта грамотрицательная палочка очень изменчива и из дружественного — комменсального — компонента микрофлоры кишечника зачастую превращается во вредный — патогенный. Практически каждый сталкивался с «колийной» инфекцией. Например, именно эшерихия вызывает большинство случаев диареи путешественников. В приморских районах местные жители иммунны к штаммам кишечной палочки, населяющим источники воды, поэтому от них страдают туристы. Одним из параметров качества питьевой воды считается косвенный показатель содержания в ней клеток кишечной палочки — так называемый коли-титр. Как и многие патогенные бактерии, кишечная палочка охотно приобретает свойства множественной устойчивости к антибиотикам . Так, в мире растет число случаев возвратного цистита [1] — воспаления мочевого пузыря — и других инфекций, вызванных мультирезистентными штаммами E. coli.

Зачем же такую опасную бактерию сделали модельной? Дело в том, что в условиях культивирования кишечная палочка часто теряет патогенность, становится неспособной жить в естественных для себя условиях (то есть одомашнивается). И этим свойством в 1940-е годы воспользовались микробиологи, проведя с лабораторными штаммами E. coli (например, со знаменитым штаммом К12) много прорывных для науки экспериментов.

Так, манипулируя мутированными штаммами кишечной палочки, которые уже научились получать при помощи облучения, Джошуа Ледерберг и Эдуард Лаури Тейтем в 1947 году обнаружили способность разных штаммов обмениваться генетическим материалом и спасать друг друга от образовавшихся дефектов, проявлявшихся в неспособности расти на минимальной питательной среде. Так был открыт процесс конъюгации бактерий, который затем послужил важным инструментом для картирования бактериального генома . Ведь тогда это можно было делать только косвенными, микробиологическими методами — сама природа генетического кода была неизвестна.

С начала 1950-х годов исследования по молекулярной генетике с использованием кишечной палочки и ее вирусов в качестве основного инструмента росли как снежный ком. Не будет преувеличением сказать, что к 70-м годам E. coli написала учебник молекулярной генетики! Вспомним открытие генетического кода, в котором участвовало несколько коллективов физиков и молекулярных биологов, в том числе Френсис Крик, Георгий Гамов и другие выдающиеся люди того времени [6]. Основные эксперименты по расшифровке кода велись на бесклеточных лизатах кишечной палочки.

Одновременно (или вскоре после этого) с помощью штаммов эшерихии были заложены основы современной молекулярной биологии. Французы Франсуа Жакоб и Жак Моно на примере лактозного оперона — серии генов E. coli, кодирующих каскад расщепления сахара лактозы, — раскрыли механизмы регуляции генной экспрессии — «самовыражения» генетического материала в виде работы белков, в данном случае — ферментов. На материале кишечной палочки описаны все процессы передачи информации в клетке: так называемые матричные процессы — репликация ДНК, транскрипция и трансляция. Я помню, как в университете на микробиологии нам раздали учебники Стента и Кэлиндара по молекулярной генетике, издания, кажется, 1981 года. Вначале было непонятно, почему это нужно для микробиологии, а потом оказалось, что материал учебника — кстати, очень непростой для восприятия второкурсника — на две трети описывает эксперименты, проведенные на кишечной палочке и ее вирусах.

Читайте также:  Бактериофаги лечение кишечной палочки

Позднее обнаружилось, что E. coli хорошо подходит для зародившейся в 1960–1970-е годы биотехнологии [7]. Бактерия хорошо переносит введение в свою клетку гетерологичных (то есть чужеродных) генов и во многих случаях способна синтезировать их продукты без вреда для себя. Белки, полученные таким способом, стали называть рекомбинантными, и теперь они широко используются в медицине и других практических задачах.

Кишечная палочка — возможно, самый исследованный организм с точки зрения молекулярной биологии. Тем не менее у элементов ее генома до сих пор обнаруживают новые свойства. Это одновременно плохо (как же мало мы знаем!) и хорошо (будет чем заняться!). Совсем недавно на защите диссертации я услышал о том, как у одной из генных кассет эшерихии, участвующей в каскаде переработки сульфолипидов, также обнаружена и лактазная активность [8]. До этого такая активность была известна только у знаменитого лактозного оперона Жакоба и Моно, описанного в 1961 году!

Кажется, что E. coli — модельный организм без недостатков. Тем не менее биотехнологам не повезло, что у этой бактерии от природы нет системы бактериального иммунитета CRISPR/Cas [9], о которой я уже упоминал в эссе о бактериофаге лямбда [3]. Именно поэтому эту систему, ныне незаменимую в генной инженерии, открыли относительно поздно.

Кишечная палочка-выручалочка — это здорово (рис. 2). Но теперь пора переместиться в мир ядерных организмов. Удобным инструментом для молекулярной биологии и генетики эукариот оказались одноклеточные грибы — дрожжи — и гаплоидный плесневый гриб — нейроспора. Как они дошли до такой одноклеточной и гаплоидной жизни и что было открыто с их помощью — читайте в следующем материале нашего путеводителя по модельным организмам через месяц.

Кишечная палочка как герой календаря «Биомолекулы»

Рисунок 2. Кишечная палочка Escherichia coli как герой календаря «Биомолекулы». Этот календарь мы сделали в 2019 году и даже провели на него весьма успешный краудфандинг. На тех, кто успел приобрести календарь, палочка уже взирает со стенки, ну а с прочими мы делимся хайрезом этого листа — скачивайте, печатайте и вешайте на стенку! Ну а кто все же хочет приобрести бумажный экземпляр — приглашаем в интернет-магазин «Планеты.ру»!

Благодарность

Автор благодарит своего друга — биоинформатика Анну Казнадзей (ИППИ РАН) за ее увлекательный рассказ о новом «лактозном опероне» кишечной палочки, в открытии которого она участвовала.

  1. Florian Hitzenbichler, Michaela Simon, Thomas Holzmann, Michael Iberer, Markus Zimmermann, et. al.. (2018). Antibiotic resistance in E. coli isolates from patients with urinary tract infections presenting to the emergency department. Infection. 46, 325-331;
  2. Антибиотики и антибиотикорезистентность: от древности до наших дней;
  3. Модельные организмы: фаг лямбда;
  4. 12 методов в картинках: генная инженерия. Часть I, историческая;
  5. Молекулярная биология;
  6. У истоков генетического кода: родственные души;
  7. Биотехнология. Генная инженерия;
  8. Anna Kaznadzey, Pavel Shelyakin, Evgeniya Belousova, Aleksandra Eremina, Uliana Shvyreva, et. al.. (2018). The genes of the sulphoquinovose catabolism in Escherichia coli are also associated with a previously unknown pathway of lactose degradation. Sci Rep. 8;
  9. CRISPR-системы: иммунизация прокариот.

Источник

Познакомьтесь с бактериями, которые составляют 90 процентов живых клеток в организме. Человеческое тела является домом для триллионов форм жизни, начиная от стержневых кишечных палочек E.coli, которые используют свои три хвоста, чтобы энергично передвигаться в нас внутри, и заканчивая бактериями сальмонеллы, которые становятся причиной пищевого отравления, но могут счастливо жить на нашей коже, не оказывая на нас никакого влияния.
Бактерии под микроскопом (13 фото)
1. Компьютерное изображение бактерий (синих и зеленых) на коже человека. Многие виды бактерий находятся на коже человека, особенно связанные с выделениями потовых желез и волосяных фолликулов. Как правило, они не вызывают проблем, хотя некоторые из них могут вызвать акне. Бактерии обычно могут стать проблемой, только если они проникают под кожу, например, через рану или порез.

1. Компьютерное изображение бактерий (синих и зеленых) на коже человека. Многие виды бактерий находятся на коже человека, особенно связанные с выделениями потовых желез и волосяных фолликулов. Как правило, они не вызывают проблем, хотя некоторые из них могут вызвать акне. Бактерии обычно могут стать проблемой, только если они проникают под кожу, например, через рану или порез.

2. Существует от 500 до 1000 различных видов бактерий в каждом человеческом теле. Они размножаются, достигая количества в 100 триллионов клеток – примерно в десять раз больше, чем человеческие клетки, которые составляют один организм. Компьютерное изображение бактерий Helicobacter Pylori в желудке, связанных с возникновением язвы желудка и рака.

2. Существует от 500 до 1000 различных видов бактерий в каждом человеческом теле. Они размножаются, достигая количества в 100 триллионов клеток – примерно в десять раз больше, чем человеческие клетки, которые составляют один организм.  Компьютерное изображение бактерий Helicobacter Pylori в желудке, связанных с возникновением язвы желудка и рака.

3. Преподаватель технологического института Корка, д-р Рой Слитор, рассказывает: “Только кишечник человека содержит почти четыре с половиной фунтов бактерий Мы, в сущности, только на десять процентов люди – остальное составляют разные микробы.” Компьютерное изображение цепей бактерий пневмонии Streptococcus pneumoniae. Это грамположительные бактерии овальной формы, которые являются одной из причин пневмонии. Также они могут вызвать опасные инфекционные заболевания легких.

Читайте также:  Как передается кишечная палочка coli

3. Преподаватель технологического института Корка, д-р Рой Слитор, рассказывает: “Только кишечник человека содержит почти четыре с половиной фунтов бактерий Мы, в сущности, только на десять процентов люди – остальное составляют разные микробы.”  Компьютерное изображение цепей бактерий пневмонии Streptococcus pneumoniae. Это грамположительные бактерии овальной формы, которые являются одной из причин пневмонии. Также они могут вызвать опасные инфекционные заболевания легких.

4. Тот факт, что мы состоим преимущественно из разных бактерий, может вызвать тревогу, но д-р Слитордал понять, что бактерии действуют нам на благо – и без них мы бы не выжили. “Это бактериально-человеческое взаимодействие по большей части является симбиотическим. В обмен на продовольствие и питание, бактерии помогают нам с пищеварением, образованием витаминов и способствуют укреплению нашей иммунной системы Кроме того, они защищают нас от патогенных инфекций – так называемых «плохих бактерий”, рассказывает он. Компьютерное изображение бактерий кишечной палочки внутри кишечника. Они могут вызывать бактериальную диарею.

4. Тот факт, что мы состоим преимущественно из разных бактерий, может вызвать тревогу, но д-р Слитордал понять, что бактерии действуют нам на благо – и без них мы бы не выжили. “Это бактериально-человеческое взаимодействие по большей части является симбиотическим. В обмен на продовольствие и питание, бактерии помогают нам с пищеварением, образованием витаминов и способствуют укреплению нашей иммунной системы Кроме того, они защищают нас от патогенных инфекций – так называемых «плохих бактерий”, рассказывает он.  Компьютерное изображение бактерий кишечной палочки внутри кишечника. Они могут вызывать бактериальную диарею.

5. Концептуальное изображение нескольких бактерии кокки на поверхности клетки.

5. Концептуальное изображение нескольких бактерии кокки на поверхности клетки.

6. Ресничная палочковидная бактерия. Типичные палочковидные бактерии включают кишечную палочку и сальмонеллы.

6. Ресничная палочковидная бактерия. Типичные палочковидные бактерии включают кишечную палочку и сальмонеллы.

7. Плавающие бактерии.

7. Плавающие бактерии.

8. Полученное с помощью электронного микроскопа изображение Helicobacter Pylori.

8. Полученное с помощью электронного микроскопа изображение Helicobacter Pylori.

9. Ресничные (с волосками) палочковидные бактерии.

9. Ресничные (с волосками) палочковидные бактерии.

10. Бактерии Helicobacter Pylori.

10. Бактерии Helicobacter Pylori.

11. Типичные палочковидные бактерии кишечной палочки и бактерии сальмонеллы, Эти бактерии имеют жгутики (волосоподобные структуры) на одном конце, которые позволяют им двигаться.

11. Типичные палочковидные бактерии кишечной палочки и бактерии сальмонеллы, Эти бактерии имеют жгутики (волосоподобные структуры) на одном конце, которые позволяют им двигаться.

12. Компьютерное изображение бактерий Enterococcus faecalis. Бактерия является одним из так называемых супервирусов, которые устойчивы к антибиотикам.

12. Компьютерное изображение бактерий Enterococcus faecalis. Бактерия является одним из так называемых супервирусов, которые устойчивы к антибиотикам.

13. Компьютерное изображение бактерий Helicobacter pylori в человеческом желудке. Они вызывают гастриты и являются самой частой причиной язвы желудка. Также могут становиться причиной рака желудка и вызывать желудочные кровотечения.

13. Компьютерное изображение бактерий Helicobacter pylori в человеческом желудке. Они вызывают гастриты и являются самой частой причиной язвы желудка. Также могут становиться причиной рака желудка и вызывать желудочные кровотечения.

via Источник

Источник

Микрофлора кишечника (кишечный биоценоз) начинает формироваться с момента рождения ребенка. У 85% детей он окончательно формируется в течение первого года жизни. У 15% детей процесс захватывает более продолжительный период. Обеспечение ребенка в первом полугодии грудным молоком является важным стабилизирующим фактором.

Бифидобактерии, лактобактерии, кишечная палочка и бактероиды обеспечивают нормальную работу организма человека. На их долю приходится 99% нормальной микрофлоры кишечника.

Рис. 1. Кишечные бактерии. Компьютерная визуализация.

Что такое микрофлора кишечника

Рис. 2. Вид стенки тонкого кишечника в разрезе. Компьютерная визуализация.

До 500 видов различных микроорганизмов содержится в кишечнике человека. Их общая масса составляет более 1 кг. Количество микробных клеток превышает численность всего клеточного состава организма. Их количество увеличивается по ходу кишечника и в толстом кишечнике бактерии уже составляют 1/3 сухого остатка каловых масс.

Сообщество микробов рассматривается как отдельный, жизненно важный орган человеческого организма (микробиом).

Микрофлора кишечника постоянна. Это обусловлено наличием рецепторов в тонкой и толстой кишке, которые приспособлены к адгезии (слипанию) определенных типов бактерий.

В тонком кишечнике превалирует аэробная флора. Представители этой флоры в процессе синтеза энергии используют свободный молекулярный кислород.

В толстом кишечнике превалирует анаэробная флора (молочнокислые и кишечные палочки, энтерококки, стафилококки, грибы, протей). Представители этой флоры синтезируют энергию без доступа кислорода.

В разных отделах кишечника кишечная микрофлора имеет разный состав. Большинство микроорганизмов обитает в пристеночной области кишечника, значительно меньше — в полостях.

Рис. 3. Кишечная микрофлора сосредоточена в пристеночной зоне кишечника.

Общая площадь кишечника (его внутренней поверхности) составляет примерно 200 м2. В кишечнике обитают стрептококки, лактобактерии, бифидобактерии, энтеробактерии, грибы, кишечные вирусы, непатогенные простейшие.

Нормальной работе организма человек обязан бифидобактериям, лактобактериям, энтерококкам, кишечной палочке и бактериодам, на долю которых приходится 99% нормальной микрофлоры кишечника. 1% составляют представители условно-патогенной флоры: клостридии, синегнойная палочка, стафилококки, протеи и др.

Бифидобактерии и лактобактерии, кишечные и ацидофильные палочки, энтерококки — основа кишечной микрофлоры человека. Состав этой группы бактерий всегда постоянный, многочисленный и осуществляющий основные функции.

Рис. 4. На фото ацидофильная палочка разрушает патогенные бактерии шигеллы (Shigella flexneri).

Кишечные палочки, энтерококки, бифидобактерии и ацидофильные палочки подавляют рост патогенных микроорганизмов.

Микрофлора кишечника в течение жизни человека претерпевает качественные и количественные изменения. Она меняется с возрастом. Микрофлора зависит от характера питания и образа жизни, климатических условий региона проживания, времени года.

Изменения микрофлоры кишечника не проходят бесследно для человека. Иногда они протекают латентно (бессимптомно). В других случаях — с ярко выраженными симптомами уже развившегося заболевания. При активной работе кишечных бактерий образуются токсические вещества, которые выводятся с мочой.

Рис. 5. Внутренняя поверхность толстой кишки. Розовые островки — кластеры бактерий. Трехмерное компьютерное изображение.

к содержанию ↑

Группы микроорганизмов кишечной микрофлоры

  • Основная группа представлена бифидобактериями, лактобациллами, нормальными кишечными палочками, энтерококками, пептострептококками и пропионобактериями.
  • Условно патогенная флора и сапрофиты представлены бактероидами, стафилококками и стрептококками, дрожжеподобными грибами и др.
  • Транзиторная флора. Эта микрофлора случайно попадает в кишечник.
  • Патогенная флора представлена возбудителями инфекционных заболеваний — шигеллами, сальмонеллами, иерсиниями и др.

к содержанию ↑

Функции микрофлоры кишечника

Микрофлора кишечника выполняет множество важнейших для человека функций:

  • Кишечная микрофлора играет большую роль в поддержании местного и общего иммунитета. Благодаря ей увеличивается активность фагоцитов и выработка иммуноглобулина А, стимулируется развитие лимфоидного аппарата, а значит подавляется рост патогенной флоры. При снижении функции кишечной микрофлоры в первую очередь страдает состояние иммунной системы организма, что приводит к развитию стафилококкового, кандидозного, аспергиллезного и других видов кандидозов.
  • Микрофлора кишечника способствует нормальной трофике слизистой оболочки кишечника, снижая тем самым проникновение в кровь различных пищевых антигенов, токсинов, вирусов и микробов. При нарушении трофики слизистой оболочки кишечника в кровь человека проникает множество патогенной флоры.
  • Ферменты, которые производит кишечная микрофлора, принимают участие в процессе расщепления желчных кислот. Вторичные желчные кислоты вновь всасываются, а небольшое их количество (5 — 15%) выделяются с калом. Вторичные желчные кислоты участвуют в формировании и продвижении каловых масс, препятствуя их обезвоживанию. Если бактерий в кишечнике чрезмерно много, то желчные кислоты начинают расщепляться преждевременно, что приводит к возникновению секреторной диареи (поноса) и стеатореи (выделения увеличенного количества жира). Нарушается всасывание жирорастворимых витаминов. Часто развивается желчекаменная болезнь.
  • Кишечная микрофлора принимает участие в утилизации клетчатки. В результате такого процесса образуются короткоцепочечные жирные кислоты, которые являются источником энергии для клеток слизистой оболочки кишечника. При недостаточном количестве клетчатки в рационе человека нарушается трофика тканей кишечника, что приводит к повышенной проницаемости кишечного барьера для токсинов и патогенной микробной флоры.
  • При участии бифидо-, лакто-, энтеробактерий и кишечной палочки синтезируются витамины К, С, группы В (В1, В2, В5, В6, В7, В9 и В12), фолиевая и никотиновая кислоты.
  • Кишечная микрофлора поддерживает водно-солевой обмен и ионный гомеостаз.
  • Благодаря секреции особых веществ микрофлора кишечника подавляет рост патогенных бактерий, вызывающих гниение и брожение.
  • Бифидо-, лакто-, и энтеробактерии принимает участие в детоксикации веществ, попадающих извне и образующихся внутри самого организма.
  • Кишечная микрофлора повышает устойчивость эпителия кишечника к канцерогенам.
  • Регулирует перистальтику кишечника.
  • Кишечная микрофлора приобретает навыки по захвату и выводу вирусов из организма хозяина, с которым долгие годы она находилась в симбиозе.
  • Кишечная флора поддерживает тепловой баланс организма. Питается микрофлора за счет веществ, непереваренных ферментативной системой веществ, поступающих из верхних отделов желудочно-кишечного тракта. В результате сложных биохимических реакций вырабатывается огромное количество тепловой энергии. Тепло с током крови разносится по всему организму и поступает во все внутренние органы. Вот почему при голодании человек всегда мерзнет.
Читайте также:  Лактозонегативная кишечная палочка что такое

к содержанию ↑

Положительная роль отдельных видов бактерий микрофлоры кишечника

Нормальной работе организма человек обязан бифидобактериям, лактобактериям, энтерококкам, кишечной палочке и бактериодам, на долю которых приходится 99% нормальной микрофлоры кишечника. 1% составляют представители условно-патогенной флоры: клостридии, синегнойная палочка, стафилококки, протеи и др.

Бифидобактерии

Рис. 6. Бифидобактерии. Трехмерное компьютерное изображение.

  • Благодаря бифидобактериям вырабатываются ацетата и молочная кислота.
    Закисляя среду обитания, они подавляют рост патогенных бактерий, вызывающих гниение и брожение.
  • Бифидобактерии снижают риск развития аллергии к пищевым продуктам у малышей.
  • Бифидобактерии обеспечивают антиоксидантный и противоопухолевый эффект.
  • Бифидобактерии принимают участие в синтезе витамина С.
  • Бифидо- и лактобактерии принимают участие в процессах по усвоению витамина Д, кальция и железа.

Кишечная палочка

  • Особое значение уделяется представителю этого рода Escherichia coli M17. Кишечная палочка (Escherichia coli M17) способна вырабатывать вещество коцилин, которое угнетает рост целого ряда болезнетворных микробов.
  • При участии кишечной палочки синтезируются витамины К, группы В (В1, В2, В5, В6, В7, В9 и В12), фолиевая и никотиновая кислоты.

Рис. 7. Кишечная палочка. Трехмерное компьютерное изображение.

Рис. 8. Кишечная палочка под микроскопом.

Лактобактерии

  • Лактобактерии угнетают рост гнилостных и условно патогенных микроорганизмов за счет образования целого ряда веществ антимикробной направленности.
  • Бифидо- и лактобактерии принимают участие в процессах по усвоению витамина Д, кальция и железа.

Рис. 9. Лактобактерии. Трехмерное компьютерное изображение.

Использование молочнокислых бактерий в пищевой промышленности

К молочнокислым бактериям относятся молочные стрептококки, сливочные стрептококки, палочки болгарская, ацидофильная, зерновая термофильная и огуречная. Молочнокислые бактерии широко используются в пищевой промышленности:

  • при производстве простокваши, сыров, сметаны и кефира;
  • вырабатывают молочную кислоту, сквашивающую молоко. Это свойство бактерий используется для производства простокваши и сметаны;
  • при приготовлении сыров и йогуртов в промышленных масштабах;
  • в процессе засаливания молочная кислота служит консервантом.
  • при сквашивании капусты и засолке огурцов, принимают участие в мочении яблок и мариновании овощей;
  • они придают особый аромат винам.

Бактерии рода стрептококков и лактобациллы придают продуктам более густую консистенцию. В результате их жизнедеятельности улучшается качество сыров. Именно они придают сыру определенный сырный аромат.

Рис. 10. Колония ацидофильной палочки.

Рис. 11. Полезные бактерии — болгарская палочка и термофильный стрептококк. Трехмерное компьютерное изображение.

Рис. 12. На фото кефирный (тибетский или молочный) гриб.

Рис. 13. Молочнокислые палочки перед непосредственным внесением в молоко.

Рис. 14. Бактерии Streptococcus thermophilus применяются при приготовлении сыра моцарелла.

Рис. 15. На фото кефир — продукт недели.

Рис. 16. На фото кефирный грибок. Он представляет собой содружество более 10 видов разных микроорганизмов.

Рис. 17. Кисломолочная продукция.

Бактерии живут на планете Земля более 3,5 млрд. лет. За это время они многому научились и ко многому приспособились. Теперь они помогают человеку. Бактерии и человек стали неразлучны.  Колоссальную пользу человеку и животным приносит микрофлора кишечника.

Статьи раздела “Дисбактериоз”

Самое популярное

ПОНРАВИЛАСЬ СТАТЬЯ?

Подпишитесь на нашу рассылку!

Источник