Получение ферментов из кишечной палочки

Получение ферментов из кишечной палочки thumbnail

Оглавление темы “Перенос веществ в бактериальной клетке. Питательные субстраты бактерий. Энергетический метаболизм бактерий.”:

1. Активный перенос веществ в бактериальной клетке. Транспорт веществ обусловленный фосфорилированием. Выделение веществ из бактериальной клетки.

2. Фермент. Ферменты бактерий. Регуляторные ( аллостерические ) ферменты. Эффекторные ферменты. Определение ферментативной активности бактерий.

3. Питательные субстраты бактерий. Углерод. Аутотрофия. Гетеротрофия. Азот. Использование неорганического азота. Ассимиляционные процессы в клетке.

4. Диссимиляционные процессы. Использование органического азота в клетке. Аммонификация органических соединений.

5. Фосфор. Сера. Кислород. Облигатные ( строгие ) аэробы. Облигатные ( строгие ) анаэробы. Факультативные анаэробы. Аэротолерантные бактерии. Микроаэрофильные бактерии.

6. Ростовые факторы бактерий. Ауксотрофы. Прототрофы. Классификация факторов стимулирующих рост бактерий. Пусковые факторы роста бактерии.

7. Энергетический метаболизм бактерий. Схема идентификации неизвестной бактерии. Экзэргонические реакции.

8. Синтез ( регенерация ) АТФ. Получение энергии в процессе фотосинтеза. Бактерии фототрофы. Реакции фотосинтеза. Стадии фотосинтеза. Световая и темновая фаза фотосинтеза.

9. Получение энергии при окислении химических соединений. Бактерии хемотрофы. Получение энергии субстратным фосфорилированием. Брожение.

10. Спиртовое брожение. Гомоферментативное молочнокислое брожение. Гетероферментативное брожение. Муравьинокислое брожение.

Фермент. Ферменты бактерий. Регуляторные ( аллостерические ) ферменты. Эффекторные ферменты. Определение ферментативной активности бактерий.

Все питательные вещества и любые элементы, подвергающиеся взаимодействиям и превращениям с участием бактерий, вступают в реакции при участии ферментов. Ферменты [от лат. fermentum, закваска], или энзимы [от греч. enzyme, дрожжи или закваска], — специфичные и эффективные белковые катализаторы, присутствующие во всех живых клетках. За каждое превращение одного соединения в другое ответственен особый фермент.

Ферменты снижают энергию активации, обеспечивая протекание таких химических реакций, которые без них могли бы проходить только при высокой температуре, избыточном давлении и при других нефизиологических условиях, неприемлемых для живой клетки.

Ферменты увеличивают скорость реакции примерно на 10 порядков, что сокращает полупериод какой-либо реакции с 300 лет до одной секунды.

Ферменты «узнают» субстрат по пространственному расположению его молекулы и распределению зарядов в ней. За связывание с субстратом отвечает определённый участок молекулы ферментативного белка — его каталитический центр. При этом образуется промежуточный фермент-субстратный комплекс, который затем распадается с образованием продукта реакции и свободного фермента.

Фермент. Ферменты бактерий. Регуляторные ( аллостерические ) ферменты. Эффекторные ферменты. Определение ферментативной активности бактерий.

Регуляторные (аллостерические) ферменты

Регуляторные (аллостерические) ферменты воспринимают различные метаболические сигналы и в соответствии с ними изменяют свою каталитическую активность.

Эффекторные ферменты

Известно шесть основных классов ферментов, катализирующих следующие реакции: оксидоредуктазы — перенос электронов; трансферазы — перенос различных химических групп; гидролазы — перенос функциональных групп на молекулу воды; лиазы — присоединение групп по двойным связям и обратные реакции; изомера-зы — перенос групп внутри молекулы с образованием изомерных форм; лигазы — образование связей С-С, C-S, С-О, C-N за счёт реакций конденсации, сопряжённых с распадом аденозинтрифосфата (АТФ).

• Бактерии способны синтезировать все ферменты, необходимые для утилизации широкого спектра питательных субстратов. Определённый субстрат в среде вызывает синтез ферментов, обеспечивающих его катаболизм. В этом случае говорят об индукции катаболических ферментов индуцирующим субстратом (иидуцибельные ферменты). Образование анаболических ферментов в процессах биосинтеза регулируется путём репрессии конечным продуктом (репрессибельные ферменты). Если в среде имеются одновременно два субстрата, то бактерия использует субстрат, обеспечивающий более быстрый рост. Синтез ферментов для расщепления второго субстрата репрессируется; такой вариант известен как катаболитная репрессия. Ферменты, синтезируемые вне зависимости от условий среды, — конститутивные ферменты.

Определение ферментативной активности бактерий

Определение ферментативной активности бактерий играет огромную роль в их идентификации. Например, все аэробы или факультативные анаэробы обладают супероксид дисмутазой и каталазой — ферментами, защищающими клетку от токсичных продуктов кислородного метаболизма. Практически все облигатные анаэробы не синтезируют эти ферменты. Только одна группа аэробных бактерий — молочнокислые бактерии каталазонегативны, но аккумулируют пероксидазу — фермент, катализирующий окисление органических соединений под действием Н202 (восстанавливается до воды). Наличие аргининдигидролазы — диагностический признак, позволяющий различить сапрофитические виды Pseudomonas от фитопатогенных. Среди пяти основных групп семейства Enterobacteriaceae только две — Escherichiae и Erwiniae— не синтезируют уреазу. Часто вирулентность штамма связана с повышенной активностью ферментов, ответственных за синтез токсинов.

Получение микробных ферментов — важнейшая отрасль промышленной микробиологии. Например, для улучшения пищеварения применяют готовые препараты ферментов — амилазы, целлюлазы, протеазы, липазы, облегчающих соответственно гидролиз крахмала, целлюлозы, белка и липидов. При изготовлении сладостей для предупреждения кристаллизации сахарозы применяют инвертазу дрожжей, для осветления фруктовых соков — пектиназу. Коллагеназа клостридий и стрептокиназа стрептококков, гидролизующие белки, способствуют заживлению ран и ожогов. Литические ферменты бактерий, секретируемые в окружающую среду, действуют на клеточные стенки патогенных микроорганизмов и служат эффективным средством в борьбе с последними, даже если они обладают множественной устойчивостью к антибиотикам. В качестве инструментария в биоорганической химии, генной инженерии и генотерапии используют выделенные из бактерий рибонуклеазы, дезоксирибонуклеазы, полимеразы, ДНК-лигазы и прочие ферменты, направленно модифицирующие нуклеиновые кислоты.

– Также рекомендуем “Питательные субстраты бактерий. Углерод. Аутотрофия. Гетеротрофия. Азот. Использование неорганического азота. Ассимиляционные процессы в клетке.”

Источник

Вид микроба Лактоза Глюкоза Маннит Мальтоза Сахароза МПБ
Индол Сероводород
E. coli
 
КГ КГ КГ КГ +

Примечание: К Г ферментация углевода сообразованием кислоты и газа, () отсутствие ферментации или образования

Ферментативная активность изучена на пестром ряду. Кроме питательной основы и углевода к среде добавлен индикатор бромкрезолпурпур. Исходный цвет среды фиолетовый, при образовании кислоты цвет среды становится желтым. Газообразование улавливают с помощью поплавков – коротких стеклянных трубочек, запаянных с одного конца, помещенных в питательную среду, открытым концом вниз. Образование индола определено с помощью реактива Ковача: при положительной реакции конец бумажки окрашивается в малиново-розовыйцвет.

4. Знакомство со схемой лабораторного диагноза эшерихиоза по схеме(зарисовать табл.3)

Среди кишечных палочек встречаются представители, которые способны вызывать заболевания кишечника, варьирирующие от умеренной диареи до тяжелого холероподобного заболевания. В основном заболевания возникают у детей 1 года жизни, но могут возникать также у детей старшего возраста и взрослых.

Кишечные палочки, вызывающие поражения кишечника, разделяют на три группы:

1. Энтеропатогенные кишечныепалочки (ЭПКП)– поражают детей первого года жизни, особенно часто в коллективах (серогруппы 026,055, 0111 и др.)

2. Энтеротоксигенные кишечные палочки (ЭТКП)– поражают детей старше года и взрослых людей (серогруппы 01,05,06 и др.). Эта группа кишечных палочек характеризуется способностью продуцировать энтеротоксин, который реагирует с аденилциклазной системой клеток эпителия слизистой тонкого кишечника, нарушает их функции вызывает холероподобные заболевания.

3. Энтероинвазионные кишечные палочки (ЭИКП)– поражают детей старше года и взрослых людей (серогруппы 025,0124 и др.) Эта группа кишечных палочек обладает способностью к инвазии в клетки слизистой оболочки толстой кишки и вызывает дизентериеподобные заболевания.

Помимо перечисленных заболеваний, которые могут принимать эпи­демический характер, кишечные палочки могут вызывать аппендицит, перитонит, цистит, пиелонефрит и т.д. В последние годы нередко ки­шечные палочки самостоятельно или в ассоциациях с другими бактери­ями вызывают внутрибольничные инфекции в хирургических, педиатри­ческих стационарах и др.

Кишечные палочки, выделяемые от больных различными заболева­ниями, как кишечной, так и не кишечной локализации, невозможно раз­личить от представителей нормальной микрофлоры ни по морфологичес­ким, ни по культуральным свойствам. Дифференциация их проводится на основе антигенной структуры.

Главной особенностью ЭПКП является антигенная структура, по­стоянная и характерная для каждого штамма. Учитывают соматический 0-антиген, соматический К-антиген и жгутиковый Н-антиген.

Общепризнано, что поставить клинический диагноз острой кишеч­ной инфекции нельзя. Обязательна постановка лабораторного диагноза. Основным в лабораторной диагностике является бактериологический диагноз.

Исследуемый материал: испражнения, рвотные массы.

Испражнения в количестве 3–5 гр. помещают в пробирку с изото­ническим раствором хлорида натрия или глицериновой смесью. Целесо­образно брать последние порции, т.к. при колиэнтеритах поражается тонкий кишечник. У грудных детей материал для исследования берут с пеленок. Чем раньше от начала заболевания исследуют испражнения, тем вероятнее возможность выделения возбудителя. Рекомендуется за­бор материала сделать до начала лечения.

Бактериологический метод. Бактериологический диагноз основан на выделении чистой куль­туры и определении её серовара.

Исследуемый материал засевают на среду Эндо, предварительно разведя его физ. раствором. Через сутки изучают колонии, выросшие на среде. Кишечные палочки вырастают на среде Эндо в виде малиново-красных колоний с металлическим блеском или без него. Отбор ко­лоний патогенных кишечных палочек проводят с помощью ориентировоч­ной реакции агглютинации с диагностической сывороткой. Употребляют смесь ОКБ – сывороток против патогенных кишечных палочек, соединяя не более 5 сывороток. Для постановки ориентировоч­ной реакции агглютинации исследуют не менее 10 колоний. Если ни одна из них не агглютинирует, дают ответ: “Патогенные кишечные палочки не обнаружены”. Из колоний с положительной реакцией агглю­тинации делают посев в пробирки со средой Олькеницкого (Клиглера) или скошен­ным агаром и ставят в термостат на 18–20 часов.

На следующий день (3 день исследования) просматривают посевы на среде Олькеницкого и скошенном МПА. Состав среды Олькеницкого (трехсахарная среда с мочевиной): к 100 г МПА расплавленного и охлажденного добавляют I г лактозы, I г сахарозы, 0,1 г глюкозы, I г мочевины, 0,02 г соли Мора, 0,03 г гипосульфита и индикатор ВР (водный голубой и розоловая кислота). Среду разливают так, что­бы был столбик и скошенная поверхность. Посев культуры делают штрихом на скошенную поверхность и уколом в глубину столбика. Фер­ментация глюкозы происходит в анаэробных условиях (её в среде мало), в этом случае цвет изменится только в столбике (среда поси­неет). При ферментации лактозы или сахарозы среда посинеет как в столбике, так и на скошенной поверхности. При разложении мочеви­ны (рН сдвигается в щелочную сторону) цвет среды станет оранжевым. Газообразование определяют по разрывам среды. При образовании сероводорода среда чернеет.

На скошенном МПА энтеропатогенные кишечные палочки образуют влажный блестящий сероватый налет.

На среде Олькеницкого кишечная палочка вызывает посинение среды, как в столбике, так и на скошенной поверхности, наблюдают­ся разрывы среды пузырьками газа (ферментация лактозы и глюкозы до кислоты и газа). Выделенную культуру проверяют в реакции аг­глютинации на стекле сначала с той же смесью сывороток, а затем раздельно с каждой сывороткой, входящей в смесь.

При отсутствии реакции агглютинации дают отрицательный ответ. При положительной реакции агглютинации необходимо подтвердить при­надлежность выделенной культуры к роду кишечных палочек. Для этого культуру засевают на жидкие среды Гисса с лактозой, глюкозой, маннитом, сахарозой, в пробирку с МПБ для обнаружения индола и серово­дорода, определяют подвижность.

Для окончательной идентификации выделенной эшерихии ставят развернутую реакцию агглютинации с типовой коли-ОКВ-сывороткой. Реакцию ставят с живой культурой для установления К-антигена и с гретой культурой для установления О-антигена.

По результатам пестрого ряда и развернутой реакции агглютина­ции может быть дан окончательный ответ.

Серологическая диагностика при кишечных инфекциях использует­ся для подтверждения этиологического значения выделенных эшерихий, заподозренных в качестве возбудителя, в научно-исследовательских целях для изучения патогенеза и иммунитета кишечных заболеваний.

Основана она на обнаружении антител в сыворотке крови. Обна­руживают О-антитела в реакции агглютинации, используя в качестве антигена культуру, выделенную от больного и кипяченую в течение 2 часов. Положительная реакция проявляется непостоянно, титр антител невысокий – ниже 1:100. В-антитела не обнаруживаются.

Можно использовать реакцию пассивной гемагглютинации, которая более чувствительна. В качестве диагностикума используют эритроци­ты барана, сенсибилизированные смывом 48-часовой культуры, кипяче­ной 2 часа. Следовательно, в РПГА также выявляют только О-антитела. Эта реакция позволяет отличить больных от людей, выделяющих энтеропатогенные кишечные палочки без клинических проявлений болезни. У последних антитела не обнаруживаются.

Ускоренные методы лабораторной диагностики. Классическое бактериологическое исследование длится 4–5 дней. Это не всегда устраивает и клиницистов и эпидемиологов, по­этому прилагается много усилий, чтобы сократить время исследова­ния и ускорить ответ лаборатории. Для решения этой проблемы пред­ложено использовать наиболее рациональные питательные среды, сокра­щать интервалы между исследованиями, а также применять методы, ос­нованные на определении антигенной структуры кишечных палочек. На­иболее чувствительным и быстрым методом является метод иммунофлюоресценции, основанный на обнаружении специфического антигена кишеч­ных палочек в исследуемом материале с помощью флюоресцирующих антител.

Этапы бактериологического исследования

при подозре­нии на эшерихиоз

Первый день

1. Сделать посев испражнений больного на среду Эндо. Для этого взять немного материала пипеткой и эмульгировать его в физиологическом растворе или глицериновой смеси, каплю эмульсии нанести на среду Эндо петлей или пипеткой. Стерильным шпателем растереть каплю на небольшом участке среды, затем, не прожигая шпатель, втереть оставшийся на нем материал по всей поверхности. Чашки с посевом поставить в термостат на 24 часа.

Второй день

2. Изучить посевы на среде Эндо, описать выросшие колонии.

Отобрать малиново-красные колонии с металлическим блеском или без него с помощью ориентировочной реакции агглютинации (не менее 10). Для постановки реакции стерильной петлей взять часть колонии и смешать с каплей агглютинирующей диагностической поливалентной сыворотки. Поливалентные сыворотки готовят в производственных условиях, они содержат антитела к нескольким сероварам эшерихий из одной серологической группы. При положительной реакции агглютинации оставшуюся часть колоний отсеять на скошенный агар или среду Олькеницкого. Если же ни одна из десяти колоний не дала агглютинации, выдать отрицательный ответ.

Третий день

3. Изучить посевы на скошенном агаре и среде Олькеницкого.

3.1. Поставить ориентировочную реакцию агглютинации на стекле с поливалентной сывороткой. Если реакция агглютинации положительна, поставить реакцию агглютинации на стекле с каждой типовой сыворот­кой, входящей в поливалентную.

3.2. Подтвердить принадлежность выделенной культуры к эшерихиям. Для этого изучить ферментативные свойства, сделав посев на жидкие среды Гисса с лактозой, глюкозой, маннитом, сахарозой, мальтозой. Сделать также посев на МПБ для определения образования индола и сероводорода.

3.3. Провести окончательную серологическую идентификацию культуры. Для этого поставить развернутую реакцию агглютинации с живой и гретой культурой. Диагностическую типовую сыворотку разводят от 1:100 до тит­ра сыворотки, указанного на этикетке. Из разведений приготовить два ряда пробирок. Приготовить антиген. Для этого смыть культуру с поверхности среды 3–5 мл физиологического раствора, разлить взвесь в 2 стерильные пробирки. Одну из них прогреть на водяной бане при 100°С в течение часа. В первый ряд разведений сыворотки внести по 2 капли живой культуры, во второй – по 2 капли гретой культуры. После встряхивания пробирки поместить в термостат на 18–20 часов.

Четвертый день

Учет результатов. Заключение по исследованию

4.1. Просмотреть посевы на пестром ряду. Для кишечной палочки ха­рактерна ферментация лактозы, глюкозы, мальтозы и маннита с обра­зованием кислоты и газа, отсутствие ферментации, сахарозы, образо­вание индола. Учет реакции агглютинации провести с помощью лупы. Агглютинация с живой культурой крупнохлопчатая (Н-агглютинация), с убитой – мелкозернистая (О-агглютинация).

Таблица 3

Источник

Физиология бактерий. Метаболизм бактерий. Питание микроорганизмов. Ферменты бактерий.
ХИМИЧЕСКИЙ СОСТАВ БАКТЕРИЙ
 
 По  химическому составу микроорганизмы мало отличаются от других живых клеток.
 

  • Вода составляет 75-85% , в ней растворены  химические вещества.
  • Сухое вещество 15-25%, в состав входят  органические и минеральные соединения

  ПИТАНИЕ, ДЫХАНИЕ,  РОСТ И РАЗМНОЖЕНИЕ БАКТЕРИЙ
 
 Питание бактерий
 Поступление в бактериальную клетку питательных веществ осуществляется несколькими способами и зависит от  концентрации веществ, величины молекул, рН среды, проницаемости мембран и др.       
 По типу  питания микроорганизмы делятся на:
 

  • автотрофы – синтезируют все  углеродсодержащие вещества из СО2;
  • гетеротрофы – в качестве источника  углерода используют органические вещества;
  • сапрофиты – питаются органическими  веществами отмерших организмов;
  • паразиты – живу за счет органических  веществ живой клетки.

  Дыхание бактерий
 Дыхание, или биологическое окисление основано на  окислительно-восстановительных реакциях,  идущих с образованием молекулы  АТФ.
 По отношению к  молекулярному кислороду бактерии можно разделить на три основные группы:
 

  • облигатные аэробы – могут расти  только при наличии кислорода;
  • облигатные анаэробы – растут на  среде без кислорода, который для них токсичен;
  • факультативные анаэробы – могут  расти как при кислороде, так и без него.

  Рост и размножение бактерий
 Большинство  прокариот размножаются бинарным делением пополам, реже почкованием и фрагментацией.
 
Рис. 13. Клетка делится пополам (фото слева – вначале внутреннее содержимое клетки делится пополам, затем образуется поперечная мембранная перегородка, синтезируется клеточная стенка, завершающая деление). Делящиеся клетки (фото справа).

 Бактерии, как  правило, характеризуются высокой скоростью размножения.  Время деления  клетки  у различных бактерий колеблется довольно в  широких пределах: от 20 минут у кишечной палочки до 14 часов у   микобактерий туберкулеза.

 На  плотных питательных средах бактерии образуют скопления клеток, называемые колониями.

Рис. 14. Колонии кишечной палочки на плотной питательной среде в чашке Петри.
 На  жидких средах рост бактерий характеризуется образованием пленки на поверхности,  равномерного помутнения либо осадка.
 
 ФЕРМЕНТЫ БАКТЕРИЙ
 
 Важную  роль в обмене веществ микроорганизмов играют ферменты.
 Различают:
 

  • эндоферменты – локализуются в  цитоплазме клеток;
  • экзоферменты – выделяются в  окружающую среду.

  Ферменты агрессии разрушают ткань и клетки, обусловливая широкое распространение микробов и их  токсинов в инфицированной ткани.

 Биохимические свойства бактерий определяются составом ферментов:
 

  • сахаролитические –расщепление углеводов;
  • протеолитические – расщепление белков,
  • липолитические – расщепление жиров,

  и являются важным  диагностиче6ским признаком при идентификации микроорганизов.
 Для многих  патогенных микроорганизмов оптимальными являются температура 37°С  и рН 7,2-7,4.
 Вода. Значимость воды для бактерий. Вода составляет около 80% массы бактерий. Рост и развитие  бактерий облигатно зависят от наличия воды, так как все химические  реакции, протекающие в живых организмах, реализуются в водной среде. Для нормального роста и развития микроорганизмов необходимо присутствие воды в окружающей среде.
Для бактерий содержание воды в субстрате должно быть более 20%. Вода должна находиться в доступной форме: в жидкой фазе в интервале температур от 2 до 60 °С; этот интервал известен как биокинетическая зона. Хотя в химическом отношении вода весьма устойчива, продукты её ионизации — ионы Н+ и ОН” оказывают очень большое влияние на свойства практически всех компонентов клетки (белков, нуклеиновых кислит, липидов и т.д.). Так, каталитическая активность ферментов в значительной мере зависит от концентрации ионов Н+ и ОН”.
ПРИНЦИПЫ  КУЛЬТИВИРОВАНИЯ МИКРООРГАНИЗМОВ
 
 Большинство  бактерий и грибов культивируются на естественных и искусственных, плотных  и жидких питательных средах, в оптимальных для них условиях. На питательных средах микроорганизмы при   размножении образуют определенной морфологии колонии, что определяет  их культуральные свойства.
 Идентификацию бактерий в исследуемом материале  проводят на основании определения морфологических, биохимических,  культуральных и других свойств микроскопическими,  микробиологическими и  другими методами исследования.
Усваиваемые бактериальной клеткой соединения. Пути поступления веществ в бактериальную клетку. Пассивный перенос. Диффузия. Основные соединения, усваиваемые бактериальной клеткой, —  углеводы, аминокислоты, органические кислоты, жирные кислоты, минеральные вещества, витамины и др. Бактериям совершенно безразличны источники питательных веществ; образно говоря, они «лишены вкуса и не страдают несварением желудка». Более того, бактерии иногда утилизируют вещества, не пригодные для животных клеток (например, карболовую кислоту, парафин, мыло и др.).
Подобно прочим формам жизни, бактерии нуждаются в одних и тех  же макроэлементах — С, Н, О, N, P, S, К, Са, Mg, Fe. Микроэлементы  (следовые элементы) — Mn, Mo, Zn, Си, Со, Ni, Va, В, С], Na, Se, Si, Wo —  не нужны каждому организму, но бактериям они необходимы для синтеза  коферментов либо поддержания специфического тина метаболизма. Например,  для оптимального роста некоторые бактерии нуждаются в высоких  концентрациях Na+; их называют галофилами [от греч. hals, соль].  Помимо источников углерода, энергии и элементов минерального питания,  многие микроорганизмы нуждаются в некоторых дополнительных веществах,  называемых факторами роста. Количественная потребность в питательных  элементах и их содержание у различных бактерий варьируют, но  принципиально химический состав бактериальной клетки сходен с другими  живыми клетками (исключением является отсутствие у бактерий стеролов).
 Пути поступления веществ в бактериальную клетку Для того чтобы питательные вещества могли подвергнуться  соответствующим превращениям в клетке, они прежде всего должны в неё  проникнуть. Но большинство бактерий обитает в условиях, мало пригодных  для поддержания строгих соотношений воды, неорганических и органических  веществ, без которых их жизнь просто невозможна. Клеточная стенка  бактерий не. является существенным барьером для небольших молекул и  ионов, но задерживает макромолекулы. Истинный барьер, обеспечивающий  избирательное поступление веществ в клетку, — ЦПМ. Она проницаема для  одних веществ и непроницаема для других. Потоки веществ движутся в обоих  направлениях (внутрь и наружу). Эти перемещения обеспечивают  разнообразные транспортные системы, необходимые для выполнения двух  важнейших задач.
1. Обеспечение адекватных концентраций веществ, участвующих в  основных биохимических реакциях, в том числе и обеспечение, при  необходимости, их быстрого поступления внутрь клетки, невзирая на  концентрацию этих веществ в окружающей среде.
2. Поддержание осмотического давления, оптимального для  протекания биохимических реакций. Поступление различных веществ внутрь  бактериальной клетки реализуют три механизма: пассивный перенос, активный перенос и транспорт, обусловленный фосфорилированисм.
Механизмы транспорта через цитоплазматическую мембрану.
 Пассивный перенос веществ в бактериальную клетку Многие вещества способны неспецифически проникать в бактериальную клетку за счёт различия их концентраций по обе стороны ЦПМ. При этом они поступают в клетку только до выравнивания градиента концентрации с внешним раствором. Такое поступление веществ происходит пассивно, без прямых энергетических затрат. Существует два вида пассивной диффузии: простая и облегчённая.
Простая диффузия. Проникновение веществ носит неспецифический  характер и целиком зависит от размеров молекул и их липофильности.  Скорость подобного переноса незначительна.
Облегчённая диффузия. Механизм транспорта носит аналогичный  характер, но проникновение облегчают помощники — специфические  мембранные белки-пермеазы, способствующие прохождению различных молекул  через ЦПМ. Транспорт сопровождается образованием комплекса  «вещество-пермеаза». После преодоления ЦПМ комплекс диссоциирует, а  перме-аза используется для последующего «проведения» других молекул.  Подобный тип транспорта реализуется по градиенту концентрации и характерен для эукариотов при поглощении Сахаров.
У прокариотов единственный пример облегчённой диффузии —  проникновение глицерина в клетки бактерий кишечной группы. При этом концентрация проникшего глицерина практически равна его концентрации в окружающей среде. В последующем (в результате реакций фосфорилирования) глицерин трансформируется в глицерин-3-фосфат.
Фермент. Ферменты бактерий. Регуляторные ( аллостерические )  ферменты. Эффекторные ферменты. Определение ферментативной активности  бактерий. Все питательные вещества и любые элементы, подвергающиеся  взаимодействиям и превращениям с участием бактерий, вступают в реакции  при участии ферментов. Ферменты [от лат. fermentum, закваска], или  энзимы [от греч. enzyme, дрожжи или закваска], — специфичные и  эффективные белковые катализаторы, присутствующие во всех живых клетках.  За каждое превращение одного соединения в другое ответственен особый  фермент.
Ферменты снижают энергию активации, обеспечивая протекание  таких химических реакций, которые без них могли бы проходить только при  высокой температуре, избыточном давлении и при других нефизиологических  условиях, неприемлемых для живой клетки.
Ферменты увеличивают скорость реакции примерно на 10 порядков, что сокращает полупериод какой-либо реакции с 300 лет до одной секунды.
Ферменты «узнают» субстрат по пространственному расположению его молекулы и распределению зарядов в ней. За связывание с субстратом отвечает определённый участок молекулы ферментативного белка — его каталитический центр. При этом образуется промежуточный фермент-субстратный комплекс, который затем распадается с образованием продукта реакции и свободного фермента.
 Регуляторные (аллостерические) ферменты •  Регуляторные (аллостерические) ферменты воспринимают различные метаболические сигналы и в соответствии с ними изменяют свою каталитическую активность.
 Эффекторные ферменты Известно шесть основных классов ферментов, катализирующих следующие реакции: оксидоредуктазы — перенос электронов; трансферазы — перенос различных химических групп; гидролазы — перенос функциональных групп на молекулу воды; лиазы — присоединение групп по двойным связям и обратные реакции; изомера-зы — перенос групп внутри молекулы с образованием изомерных форм; лигазы — образование связей С-С, C-S, С-О, C-N за счёт реакций конденсации, сопряжённых с распадом аденозинтрифосфата (АТФ).
•  Бактерии способны синтезировать все ферменты, необходимые  для утилизации широкого спектра питательных субстратов. Определённый  субстрат в среде вызывает синтез ферментов, обеспечивающих его  катаболизм. В этом случае говорят об индукции катаболических ферментов  индуцирующим субстратом (иидуцибельные ферменты). Образование анаболических ферментов в процессах биосинтеза регулируется путём репрессии конечным продуктом (репрессибельные ферменты). Если в среде имеются одновременно два субстрата, то бактерия использует субстрат, обеспечивающий более быстрый рост. Синтез ферментов для расщепления второго субстрата репрессируется; такой вариант известен как катаболитная репрессия. Ферменты, синтезируемые вне зависимости от условий среды, — конститутивные ферменты.
 Определение ферментативной активности бактерий •  Определение ферментативной активности бактерий играет  огромную роль в их идентификации. Например, все аэробы или факультативные анаэробы обладают супероксид дисмутазой и каталазой — ферментами, защищающими клетку от токсичных продуктов кислородного метаболизма. Практически все облигатные анаэробы не синтезируют эти ферменты. Только одна группа аэробных бактерий — молочнокислые бактерии каталазонегативны, но аккумулируют пероксидазу — фермент, катализирующий  окисление органических соединений под действием Н202 (восстанавливается  до воды). Наличие аргининдигидролазы — диагностический признак,  позволяющий различить сапрофитические виды Pseudomonas от  фитопатогенных. Среди пяти основных групп семейства Enterobacteriaceae  только две — Escherichiae и Erwiniae— не синтезируют уреазу. Часто  вирулентность штамма связана с повышенной активностью ферментов,  ответственных за синтез токсинов.
•  Получение микробных ферментов — важнейшая отрасль промышленной микробиологии. Например, для улучшения пищеварения применяют готовые препараты ферментов — амилазы, целлюлазы, протеазы, липазы, облегчающих соответственно гидролиз крахмала, целлюлозы, белка и липидов. При изготовлении сладостей для предупреждения кристаллизации сахарозы применяют инвертазу дрожжей, для осветления фруктовых соков — пектиназу. Коллагеназа клостридий и стрептокиназа стрептококков, гидролизующие белки, способствуют заживлению ран и ожогов. Литические ферменты бактерий, секретируемые в окружающую среду, действуют на клеточные стенки патогенных микроорганизмов и служат эффективным средством в борьбе с последними, даже если они обладают множественной устойчивостью к антибиотикам. В качестве инструментария в биоорганической химии, генной инженерии и генотерапии используют выделенные из бактерий рибонуклеазы, дезоксирибонуклеазы, полимеразы, ДНК-лигазы и прочие ферменты, направленно модифицирующие нуклеиновые кислоты.

Источник

Читайте также:  Кишечная палочка окрашенная по граму