Работа лактозного оперона у кишечной палочки
Лактозный оперон (англ. lac operon) — полицистронный оперон бактерий, кодирующий гены метаболизма лактозы.
Регуляция экспрессии генов метаболизма лактозы у кишечной палочки (Escherichia coli) была впервые описана в 1961 году учеными Ф. Жакобом и Ж. Моно[1] (получившими в 1965 году Нобелевскую премию совместно с А. Львовым). Бактериальная клетка синтезирует ферменты, принимающие участие в метаболизме лактозы, лишь в том случае, когда лактоза присутствует в окружающей среде и клетка испытывает недостаток глюкозы.
Структура[править | править код]
Лактозный оперон (lac operon) состоит из трех структурных генов, промотора, оператора и терминатора. Иногда принимается, что в состав оперона входит также ген-регулятор, который кодирует белок-репрессор (хотя он находится в другом участке генома и не имеет общего с лактозным опероном промотора).
Структурные гены лактозного оперона — lacZ, lacY и lacA:
- lacZ кодирует фермент β-галактозидазу, которая расщепляет дисахарид лактозу на глюкозу и галактозу,
- lacY кодирует β-галактозидпермеазу, мембранный транспортный белок, который переносит лактозу внутрь клетки.
- lacA кодирует β-галактозидтрансацетилазу, фермент, переносящий ацетильную группу от ацетил-КoA на бета-галактозиды.
Для катаболизма лактозы необходимы только продукты генов lacZ и lacY; роль продукта гена lacA не ясна. Возможно, что реакция ацетилирования дает бактериям преимущество при росте в присутствии определённых неметаболизируемых аналогов бета-галактозидов, поскольку эта модификация ведет к их детоксикации и выведению из клетки.
Регуляция[править | править код]
Случай, когда есть глюкоза и нет лактозы
Случай, когда есть глюкоза и есть лактоза
Случай, когда нет глюкозы и нет лактозы
Случай, когда нет глюкозы и есть лактоза
РНК-полимераза начинает транскрипцию с промоторного района, который перекрывается с операторным районом. В отсутствие или при низкой концентрации лактозы в клетке белок-репрессор, который является продуктом моноцистронного оперона LacI, обратимо соединяется с операторным районом и препятствует транскрипции. Таким образом, в отсутствие лактозы в клетке ферменты для метаболизма лактозы не синтезируются.
Даже в случае, когда в плазматической мембране клетки отсутствует фермент β-галактозидпермеаза, лактоза из окружающей среды может попадать в клетку в небольших количествах. В клетке две молекулы лактозы связываются с белком-репрессором, что приводит к изменению его конформации и далее к диссоциации белка-репрессора от операторного участка. Может осуществляться транскрипция генов лактозного оперона. При снижении концентрации лактозы новые порции белка-репрессора взаимодействуют с операторными последовательностями и препятствуют транскрипции. Данный механизм регуляции активности лактозного оперона называют негативной индукцией. Веществом-индуктором служит лактоза; при её связывании с белком-репрессором происходит его диссоциация от операторного участка.
Если в клетке концентрация глюкозы достаточна для поддержания метаболизма, активация лактозного оперона не происходит. Промоторная последовательность лактозного оперона «слабая», поэтому даже при отсутствии белка-репрессора на операторном участке транскрипция практически не инициируется. Когда концентрация глюкозы в клетке снижается, происходит активация фермента аденилатциклазы, которая катализирует превращение АТФ в циклическую форму — цАМФ (циклическую форму АМФ в данном случае также называют «сигналом клеточного голода»). Глюкоза является ингибитором фермента аденилатциклазы и активирует фосфодиэстеразу — фермент, катализирующий превращение молекулы цАМФ в АМФ. цАМФ соединяется с белком, активирующим катаболизм (англ. САР, catabolism activating protein), при этом образуется комплекс, который взаимодействует с промотором лактозного оперона, изменяет его конформацию и приводит к повышению сродства РНК-полимеразы к данному участку. В присутствии лактозы происходит экспрессия генов оперона. Белок CAP оказывает положительный контроль на лактозный оперон.
Итак, ферменты для усвоения лактозы синтезируются в клетке кишечной палочки при двух условиях: 1) наличие лактозы; 2) отсутствие глюкозы. Регуляция работы лактозного оперона в зависимости от концентрации лактозы происходит по принципу отрицательной обратной связи: чем больше лактозы — тем больше ферментов для её катаболизма (положительная прямая связь); чем больше ферментов — тем меньше лактозы, чем меньше лактозы — тем меньше производится ферментов (двойная отрицательная обратная связь).
Биологический смысл[править | править код]
Благодаря описанному механизму регуляции транскрипции генов, входящих в состав лактозного оперона, бактерии оптимизируют энергетические затраты, синтезируя ферменты метаболизма лактозы не постоянно, а лишь тогда, когда клетке это необходимо. Сходный механизм регуляции имеется у большинства прокариот; у эукариот он устроен значительно сложнее.
См. также[править | править код]
- Факторы транскрипции
- Лактоза
- Кишечная палочка
Примечания[править | править код]
Ссылки[править | править код]
- Анимация «Регуляция работы лактозного оперона» (англ.)
Источник
Регуляция активности генов у прокариот на примере лак-оперона
С-ва ген кода
Ген код – это принцип записи инф о последовательности аминокислот в полипептиде в виде последовательности нуклеотидов в молекуле Ирнк.
генетич код триплетен.
Триплеты в молекле иРНК наз кодонами, а комплементарные им тирплеты в молекуле тРНК- антиколонами.
свойства ген кода
1 . Триплетность.одну аминокислоту кодируют три рядом расположенных нуклеотида.
2. Неперекрываемость.каждый нуклеотид входит в состав только одного кодона.
3.Вырожденность (избыточность).один смысловой элемент (аминокислота) шифруется несколькими кодонами.
4. Специфичность (однозначность).каждый отдельный кодон кодирует только один аминокислотный остаток в молекуле полипептида.
5. Непрерывность.каждый нуклеотид принадлежит какому либо триплету т.е между кодонами иРНК нет нуклеотидов, не входящих в последовательность кодонов данного гена.
6. Коллинеарность.кодоны нуклеотдиных кислот и соответствующие им аминокислоты полипептидов расположены в одинаковом линейном порядке.
7. Однонаправленность. Считавание кода начинается с определяемой кодоном – инициатором точки и идёт в одном направлении в пределах данного гена от 5’концу к 3’концу.
8. Универсальность.ген код одинаков для всез организмов.
активность генов проявляется на уровне определяемых ими фенотипических эффектах. Мерой активности генов служит функциональная активность белков, контролируемых этими генами.
В механизме регуляции активности генов прокариот большую роль играют особые гены-регуляторы, контролирующие синтез регуляторных белков.
Такие белки, соединяесь с последовательностями промоторов реагируемых генов, способны подавлять или активировать их транскрипцию.
Регуляторные белки, подавляющие транскрипцию структурных генов, наз репрессорами.
Последовательности нуклеотидов регуляторных генов, с которыми взаимодействуют белки репрессоры, получили название операторов.
Регуляция, связанная с подавлением транскрипции, наз негативной.
Регуляторные белки, активирующие транскрипции. структурных генов, наз активаторами. Регуляция, связанная с активацией транскрипции получила наз – позитивной.
К негенетиским факторам регуляции экспрессии генов, или эффектрорам, относятся в-ва небелковой природы. Взаимодействуя с регуляторными бедками, они изменяют их биологическую активность. Различают 2 вида эффекторов: индукторы – «включающие» транскрипцию и корепрессоры, «выкл её».
Лактозный оперон E coil включ след элементы: 3 гена, кодирующих белки ферменты: B-галактозидазу, пермеазу и трансацетилазу, участвующие в метаболизме лактозы и транспорте её в клетку, и регуляторной области. Регуляторная область, в свою очередь, сост из промотора, оператора– последовательности нуклеотидов для связ белка репрессора, а также последовательности нуклеотидов для связ белка активатора. Активность генов контролир регуляторным геном Lac1.
При выращивании E.coli на среде, содержащей только глюкозу геи- регулятор лак-оперон синтезирует активный белок-репрсссор, который, взаимодействуя с оператором, «выключает» транскрипцию структурных генов, кодирующих ферменты, участвующие в метаболизме и транспорте лактозы в клетку.
Если клетки E.coli перенести на среду, содержащую только лактозу, то проникая внутрь клеток небольшая часть ее превращается в аллолактозу, которая связываясь с белком -репрессором, инактивируст его. В результате РНК-полимераза осуществляет транскрипцию полицистронной мРНК для синтеза всех ферментов, необходимых для транспорта и метаболизма лактозы.
В данном случает осуществляется негативная регуляция генов оперона. При этом аллолактоза служит ИНДУКАТОРОМ генов лак-оперона, кодирующего белки, участвующие в транспорте и метаболизме лактозы.
При культивировании кишечной палочки на среде, содержащей как лактозу, так и глюкозу клетки Е coli, используют для гликолиза в основном глюкозу. Указанная особенность метаболизма обусловливается наличием у Е coli механизма положительной регуляции активности генов lac оперона.
50. общая схема регуляции генов у эукариот
1) осуществление транскрипции эукриотических генов возможно лишь при декомпактизации хроматина: 2) регуляция активности генов у эукариот осуществляется на всех уровнях реализации наследственной информации: на уровне транскрипции, РНК -процессннта альтернативный сплайсинг), транспорта зрелой мРНК из ядра в цитоплазму, трансляции и посттрансляционных преобразований белков ( химическая модификация и разрушение функционально активного полипептида) 3)активность каждою структурного гена контролируется многими генами-регуляторами, а эффекторами часто служат гормоны.
Источник
Вопрос-принцип работы лактозного оперона
Регуляторный ген синтезирует белок, который взаимодействует с оператором.
Ген1 ответственен за расщепление галактозы,
Ген2ответственен за перенос , проникновение галактозы
Ген3 превращает галактозу в глюкозу.
Позитивный контроль:
глюкозы нет, есть комплекс цАМФ+САРбелок,
Глюкоза есть , нет цАМФ+САРбелок,
Негативный контроль:
Если нет глюкозы в организме, то комплекс цАМФ+САР обеспечивает посадку полимеразы
Если появляется лактоза, то регуляторный белок уходит с оператора и синтез становится возможным.
Лактозный оперон Е. coli, состоящий из трех структурных генов, промотора и оператора, был первой ферментной системой, на которой Ж. Моно и Ф. Жакоб изучали механизм индукции синтеза ферментов.
В отсутствие лактозы молекула репрессора, активная в свободном состоянии, связывается с оператором и подавляет транскрипцию структурных генов. Когда в клетку попадает лактоза, она связывается с репрессором, в результате образуется неактивный комплекс репрессора с индуктором, который не может взаимодействовать с оператором и, следовательно, препятствовать транскрипции структурных генов. В результате индуцируется синтез ферментов катаболизма лактозы. При удалении из клетки индуктора peпpeccop снова переходит в активное свободное состояние, связывается с оператором, что приводит к прекращению синтеза соответствующих ферментов.
Лактозный оперон (lac operon) состоит из трех структурных генов, промотора, оператора и терминатора. Принимается, что в состав оперона входит также ген-регулятор, который кодирует белок-репрессор.
Структурные гены лактозного оперона — lacZ, lacY и lacA:
lacZ кодирует фермент β-галактозидазу, которая расщепляет дисахарид лактозу на глюкозу и галактозу,
lacY кодирует β-галактозид пермеазу, мембранный транспортный белок, который переносит лактозу внутрь клетки.
lacA кодирует β-галактозид трансацетилазу, фермент, переносящий ацетилную группу от ацетил-КoA на бета-галактозиды.
Для катаболизма лактозы необходимы только продукты генов lacZ и lacY, роль продукта гена lacA не ясна.
Регуляция(подробнее)
РНК-полимераза начинает транскрипцию с промоторного района, который перекрывается с операторным районом. В отсутствие или при низкой концентрации лактозы в клетке белок-репрессор, который является продуктом моноцистронного оперона LacI, обратимо соединяется с операторным районом и препятствует транскрипции. Таким образом, в отсутствие лактозы в клетке ферменты для метаболизма лактозы не синтезируются.
Даже в случае, когда в плазматической мембране клетки отсутствует фермент β-галактозидпермеаза, лактоза из окружающей среды может попадать в клетку в небольших количествах. В клетке две молекулы лактозы связываются с белком-репрессором, что приводит к изменению его конформации и далее к диссоциации белка-репрессора от операторного участка. Может осуществляться транскрипция генов лактозного оперона. При снижении концентрации лактозы новые порции белка-репрессора взаимодействуют с операторными последовательностями и препятствуют транскрипции. Данный механизм регуляции активности лактозного оперона называют позитивной индукцией. Веществом-индуктором служит лактоза; при её связывании с белком-репрессором происходит его диссоциация от операторного участка.
Если в клетке концентрация глюкозы достаточная для поддержания метаболизма, активация лактозного оперона не происходит. Промоторная последовательность лактозного оперона «слабая», поэтому даже при отсутствии белка-репрессора на операторном участке транскрипция практически не инициируется. Когда концентрация глюкозы в клетке снижается, происходит активация фермента аденилатциклазы, которая катализирует превращение АТР в циклическую форму — сАМР (циклическую форму АМР в данном случае также называют «сигналом клеточного голода»). Глюкоза является ингибитором фермента аденилатциклазы и активирует фосфодиэстеразу — фермент, катализирующий превращение молекулы сАМР в АМР. сАМР соединяется с белком, активирующим катаболизм (англ. САР, catabolism activating protein), при этом образуется комплекс, который взаимодействует с промотором лактозного оперона, изменяет его конформацию и приводит к повышению сродства РНК-полимеразы к данному участку. В присутствии лактозы происходит экспрессия генов оперона. Данный механизм регуляции активности лактозного оперона называют негативной индукцией. «Негативным индуктором» служит глюкоза, которая подавляет активность лактозного оперона.
Итак, ферменты для усвоения лактозы синтезируются в клетке кишечной палочки при двух условиях: 1) наличие лактозы; 2) отсутствие глюкозы. Регуляция работы лактозного оперона в зависимости от концентрации лактозы происходит по принципу отрицательной обратной связи: чем больше лактозы – тем больше ферментов для её катаболизма (положительная прямая связь); чем больше ферментов – тем меньше лактозы, чем меньше лактозы – тем меньше производится ферментов (двойная отрицательная обратная связь).
Рекомендуемые страницы:
Воспользуйтесь поиском по сайту:
Источник
Строение лактозного оперона[править]
Оперон — функциональная единица генома у прокариот, в состав которой входят гены, кодирующие совместно или последовательно работающие белки и часто объединенные под одним промотором.
Концепцию оперона для прокариот предложили в 1961 году французские ученые Франсуа Жакоб, Жан Моно и Андре Львов, за что получили Нобелевскую премию в 1965 году.
Характерным примером оперонной организации генома прокариот является лактозный оперон.
Регуляция экспрессии генов метаболизма лактозы у кишечной палочки (Escherichia coli) была впервые описана в 1961 году учеными Ф. Жакобом и Ж. Моно.
Лактозный оперон (lac оперон) — полицистронный оперон бактерий, в состав которого входят гены, отвечающие за усвоение и расщепление лактозы.
Лактозный оперон состоит из промотора, оператора, трех структурных генов и терминатора. Иногда принимается, что в состав оперона входит также ген-регулятор, который кодирует белок-репрессор.
Промотор — последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как стартовая площадка для начала специфической, или осмысленной, транскрипции. У прокариот все промоторы включают ряд похожих последовательностей нуклеотидов, важных для узнавания их РНК-полимеразой; в то же время разные промоторы отличаются друг от друга по другим последовательностям. Промотор асимметричен, что позволяет РНК-полимеразе начать транскрипцию в правильном направлении и указывает то, какая из двух цепей ДНК будет служить матрицей для синтеза РНК.
Промотор может частично перекрываться или вовсе не перекрываться с оператором.
Оператор — это последовательность нуклеотидов ДНК, с которой связывается регуляторный белок — репрессор или активатор.
Структурные гены — это гены, кодирующие белки.
Структурные гены лактозного оперона — lacZ, lacY и lacA:
- lacZ кодирует фермент β-галактозидазу, которая расщепляет дисахарид лактозу на глюкозу и галактозу,
- lacY кодирует β-галактозид пермеазу, мембранный транспортный белок, который переносит лактозу внутрь клетки.
- lacA кодирует β-галактозид трансацетилазу, фермент, переносящий ацетилную группу от ацетил-КoA на бета-галактозиды.
Для усвоения лактозы необходимы только продукты генов lacZ и lacY, роль продукта гена lacA не ясна.
При транскрипции с лактозного оперона считывается одна полицистронная мРНК, в которой закодированы все три белка. С неё сразу же начинают считываться эти белки, причем рибосомы «перескакивают» стоп-кодоны, разделяющие нуклеотидные последовательности, кодирующие каждый из белков. (Для прокариот полицистронные РНК обычны, у эукариот они практически не встречаются).
Регуляция работы лактозного оперона[править]
Бактериальная клетка синтезирует ферменты, принимающие участие в метаболизме лактозы, лишь в том случае, когда лактоза присутствует в окружающей среде и клетка испытывает недостаток глюкозы.
РНК-полимераза начинает транскрипцию с промотора, который в случае лактозного оперона перекрывается с оператором. В отсутствие или при низкой концентрации лактозы в клетке белок-репрессор, который является продуктом гена LacI, обратимо соединяется с оператором и препятствует транскрипции. Таким образом, в отсутствие лактозы в клетке ферменты для метаболизма лактозы не синтезируются.
Даже в случае, когда в плазматической мембране клетки отсутствует фермент β-галактозидпермеаза, лактоза из окружающей среды может попадать в клетку в небольших количествах. В клетке две молекулы лактозы связываются с белком-репрессором, что приводит к изменению его конформации и далее к отделению белка-репрессора от оператора. Теперь может осуществляться транскрипция генов лактозного оперона. При снижении концентрации лактозы новые порции белка-репрессора взаимодействуют с операторными последовательностями и препятствуют транскрипции. Данный механизм регуляции активности лактозного оперона называют позитивной индукцией. Веществом-индуктором служит лактоза; при её связывании с белков-репрессором происходит его отделение от оператора.
Если в клетке концентрация глюкозы достаточная для поддержания обмена веществ, активация лактозного оперона не происходит. Промотор лактозного оперона «слабый» — даже при отсутствии белка-репрессора на операторе транскрипция практически не инициируется без дополнительных условий. Когда концентрация глюкозы в клетке снижается, происходит активация фермента аденилатциклазы, которая катализирует превращение АТФ в циклическую форму — цАМФ (цАМФ в данном случае также называют «сигналом клеточного голода»). Глюкоза — ингибитор фермента аденилатциклазы; кроме того, она активирует фосфодиэстеразу — фермент, катализирующий расщепление цАМФ.
цАМФ соединяется с белком, активирующим катаболизм (англ. САР, catabolism activating protein). Образуется комплекс цАМФ-CAP, который взаимодействует с промотором лактозного оперона, изменяет его конформацию и приводит к повышению сродства РНК-полимеразы к данному участку. В присутствии лактозы и при высокой концентрации цАМФ (то есть в отсутствии глюкозы) происходит активная транскрипция генов оперона, активно синтезируются ферменты для усвоения лактозы. Механизм регуляции активности лактозного оперона глюкозой называют негативной индукцией — глюкоза служит «негативным индуктором», то есть веществом, в присутствии которого лактозный оперон «выключен».
Итак, ферменты для усвоения лактозы синтезируются в клетке кишечной палочки при двух условиях: 1) наличие лактозы; 2) отсутствие глюкозы.
Вопрос 1
Мутации каких участков в ДНК кишечной палочки могут привести к появлению бактерий:
- Не способных усваивать лактозу?
- Синтезирующих ферменты для усвоения лактозы даже в её отсутствие?
- Способных усваивать лактозу при высокой концентрации глюкозы?
Для простоты будем считать. что любая мутация приводит к «поломке» (выходу из строя) гена или иного участка ДНК.
Биологический смысл[править]
Благодаря описанному механизму регуляции транскрипции генов, входящих в состав лактозного оперона, бактерии оптимизируют энергетические затраты, синтезируя ферменты метаболизма лактозы не постоянно, а лишь тогда, когда клетке это необходимо. Сходный механизм регуляции имеется у большинства прокариот; у эукариот он устроен значительно сложнее.
Регуляция работы лактозного оперона в зависимости от концентрации лактозы происходит по принципу отрицательной обратной связи: чем больше лактозы — тем больше ферментов для её усвоения (положительная прямая связь); чем больше ферментов — тем меньше лактозы, чем меньше лактозы — тем меньше производится ферментов (двойная отрицательная обратная связь).
- [1] Анимация «Регуляция работы лактозного оперона» (англ. текст)
Источник