Регуляция биосинтеза аминокислот кишечной палочкой

Регуляция биосинтеза аминокислот кишечной палочкой thumbnail

Все клетки любого организма, какие бы функции они ни выполняли, имеют полный набор свойственных данному организму генов. Вместе с тем хорошо известно, что у любого организма клетки разных тканей и органов отличаются поразличным признакам и набору имеющихся в них белков. Даже в одной клетке на разных стадиях ее развития синтезируются и функционируют разные белки. Следовательно, располагая полной генетической информацией, каждая клетка на определенном этапе развития использует лишь ту ее часть, которая необходима в настоящий момент, транскрибируются только те гены, продукты которых нужны клетке в данный момент для осуществления ее функций. Следовательно, клетка должна располагать механизмами, определяющими, какие гены и в какой последовательности должны экспрессироваться (“выражаться”, то есть давать продукт — РНК или белок). Наиболее полно регуляция генной активности изучена на примерах адаптивного синтеза ферментов у прокариот. 

В зависимости от условий количество определенного фермента в бактериальной клетке может существенно изменяться. Некоторые ферменты, необходимые бактерии для усвоения определенных питательных веществ, активно синтезируются в клетке только тогда, когда эти вещества присутствуют в культурной среде, и синтез их прекращается, если каким-либо образом они удаляются из среды. Такой тип регуляции синтеза фермента называется индукцией, а вещество, включающее экспрессию гена — индуктором.

Активация и репрессия оперонов у бактерий 

лактозный оперон

Один из наиболее наглядных примеров данного типа регуляции — лактозный оперон кишечной палочки — группа генов, контролирующая синтез ферментов, осуществляющих катаболизм (расщепление) молочного сахара — лактозы. Буквально через несколько минут после добавления в питательную среду для кишечной палочки лактозы бактерии начинают вырабатывать три фермента: галактозидпермеазу, бета-галактозидазу и галактозидтрансацетилазу. Как только ресурсы лактозы в среде исчерпываются, синтез ферментов сразу же прекращается.

Приведенный пример станет более понятным при рассмотрении схемы работы лактозного оперона, изучение которого позволило французским ученым Ф. Жакобу и Ж. Моно разработать собственно концепцию оперона и выяснить основные принципы регуляции транскрипции у прокариотов.
Оперон — это группа генов прокариот, находящихся под общим промотором. Все эти гены транскрибируются на одну общую молекулу мРНК. Такая мРНК, содержащая информацию о нескольких белках, называется полицистронной. Участок ДНК или РНК, содержащий информацию об одном белке, называется цистроном.

Регуляция биосинтеза аминокислот кишечной палочкой

Лактозный оперон начинается с регуляторного участка, предназначенного для присоединения белка-активатора, в свою очередь необходимого для присоединения к следующему за этим участком промотору (П) РНК-полимеразы. Последовательность нуклеотидов промотора узнаётся РНК-полимеразой.

С промотором перекрывается следующий участок — оператор (О). С ним может связываться регуляторный белок-репрессор. Репрессор блокирует промотор и тем самым предотвращает транскрипцию гена.

Регуляция биосинтеза аминокислот кишечной палочкой

За оператором следуют структурные гены для трех упомянутых ранее ферментов. Заканчивается оперон терминатором, прекращающим продвижение РНК-полимеразы и транскрипцию оперона.

Регуляторный белок-репрессор в незначительном количестве синтезируется в клетке постоянно, так что в цитоплазме одновременно присутствует не более 10 его молекул. Этот белок обладает сродством к последовательности нуклеотидов в области оператора и сродством к лактозе.

В отсутствие лактозы белок-репрессор связывается с операторным участком и препятствует продвижению по ДНК РНК-полимеразы: не синтезируется мРНК, не синтезируются и ферменты. После добавления в среду лактозы белок-репрессор связывается с нею быстрее, чем с операторным участком. В результате последний остается свободным и не препятствует продвижению РНК-полимеразы. Идет транскрипция и трансляция. Синтезирующиеся ферменты осуществляют транспорт в клетку и расщепление лактозы. После того как вся лактоза будет израсходована, нечем станет связывать белок-реп рессор и он снова свяжется с оператором, прекратив транскрипцию оперона. Таким образом, индукция оперона вызывается тем, что регуляторный белок не прикрепляется к оператору. Такой тип индукции называется негативным.

Параллельно наблюдается и другой тип регуляции — позитивная регуляция. При глюкозном голодании в клетке из АТФ образуется сигнальное вещество цАМФ, которое связывается с белком-активатором (САР), после чего последний приобретает способность связывать ДНК в промоторной области и усиливать транскрипцию лактозного оперона. Таким образом, когда не хватает глюкозы, стимулируется всасывание и катаболизм лактозы. При одновременном присутствии глюкозы и лактозы последняя не метаболизируется, пока существенно не упадёт концентрация глюкозы.

триптофановый оперон

В случае индукции лактозного оперона аллолактоза (индуктор) препятствует присоединению белка-репрессора к оператору, то возможен и другой вариант регуляции, когда, наоборот, индуктор придает регуляторному белку способность присоединяться к оператору. Если в первом случае соединение индуктора с белком-регулятором разрешало транскрипцию, то во втором оно запрещает ее.

Примером такой регуляции может служить хорошо изученный триптофановый оперон кишечной палочки. В его состав входят пять структурных генов, обеспечивающих синтез аминокислоты триптофана, оператор и промотор. Репрессор синтезируется вне триптофанового оперона. Пока клетка успевает расходовать весь синтезирующийся триптофан, оперон работает, синтез триптофана продолжается. Если же в клетке появляется избыток триптофана, он соединяется с репрессором и изменяет его таким образом, что этот белок связывается с оператором. Комплекс репрессора с триптофаном взаимодействует с оператором и препятствует транскрипции структурных генов, вследствие чего синтез триптофана прекращается. В отсутствие триптофана репрессор лишается способности связываться с оператором, и происходит транскрипция структурных генов оперона и, в итоге, синтез триптофана в клетке.

Читайте также:  Выделения при кишечной палочке в мазке

Регуляция биосинтеза аминокислот кишечной палочкой

Другой уровень регуляции триптофанового оперона включает аттенуацию — тонкую подстройку количества продукта в зависимости от концентрации присутствующего триптофана.

аттенуация триптофанового оперона

Аттенуация основана на формировании мРНК альтернативных вторичных структур, в зависимости от того, в течение какого времени определенные ее участки связаны с рибосомой. Аттенуация возможна благодаря сопряжению транскрипции и трансляции у прокариот, то есть тому факту, что трансляция может происходить одновременно с транскрипцией.
Регуляция в данном случае осуществляется за счет того, что в начале первого гена оперона закодировано несколько остатков триптофана; в присутствии триптофана трансляция этого участка идет с нормальной скоростью, и перед рибосомой образуется терминирующая шпилька, которая влияет на РНК-полимеразу, в результате чего транскрипция останавливается. 
При низкой концентрации триптофана рибосома “застопоривается” на триптофановых кодонах — их трансляция занимает больше времени. В результате РНК формирует альтернативную вторичную структуру, которая не приводит к терминации транскрипции, рибосома расплетает ее, и экспрессия оперона продолжается. 

Регуляция биосинтеза аминокислот кишечной палочкой

регуляция генов бактериофагов

Описанные типы регуляций характеризуют механизмы регуляции отдельных оперонов, практически не касаясь регуляции экспрессии генома в целом, в то время как совершенно очевидно, что регуляция разных оперонов должна носить согласованный характер. Такой согласованный характер работы разных оперонов и генов получил у вирусов и фагов название каскадной регуляции. Согласно принципу каскадной регуляции сначала происходит транскрипция «предранних», затем «ранних» и наконец «поздних» генов в зависимости от того, какие белки требуются на разных стадиях вирусной (фаговой) инфекции.

Конечно, принцип каскадной регуляции у фагов относится к наиболее простым. У более сложно организованных организмов для осуществления большого количества функций, происходящих одновременно или с определенной последовательностью, необходима согласованная работа многих генов и оперонов. Особенно это касается эукариотов, отличающихся не только более сложной организацией генома, но и многими другими особенностями механизмов регуляции генной активности.

регуляция генов эукариот

По принципам регуляции гены эукариотов можно условно разделить на три группы: 1) функционирующие во всех клетках организма; 2) функционирующие только в тканях одного типа; 3) обеспечивающие выполнение специализированными клетками конкретных функций.

Механизмы регуляции экспрессии генов у эукариот:

  1. У эукариот известна регуляция генной активности на уровне структуры хроматина. В регуляции генов эукариот важную роль играют гистоны — основные белки, входящие в состав хромосом. Одни модификации гистонов характерны для активно работающих генов, другие — для молчащих. Существуют также вариантные гистоны, закодированные особыми генами. Они могут заменять “обычные” гистоны в определенных хроматиновых контекстах, влияя на регуляцию генов. 
    Регуляция биосинтеза аминокислот кишечной палочкой

    На электронных микрофотографиях в ядрах неделящихся клеток эукариот видны более плотно упакованные участки — гетерохроматин — и более рыхлые участки, называемые эухроматином. Гетерохроматин содержит центромерные и теломерные участки хромосом (облигатный гетерохроматин) и молчащие гены (факультативный гетерохроматин), а эухроматин — активно работающие гены.

  2. Также распространенным типом регуляции экспрессии генов у эукариот является метилирование ДНК, в основном по 5 положению цитозина. Метилированная ДНК, как правило, присутствует в выключенных генах. Этим, в частности, объясняется трудность организменного клонирования, связанная с тем, что в соматических клетках (клетках тела) многие гены метилированы, поэтому когда ядром соматической клетки замещают ядро зиготы, экспрессия этих генов зачастую не активируется, т.к. метилирование генов не снимается. Надо отметить, что регуляторное метилирование распространено не у всех эукариот, например, оно не характерно для генома мушки дрозофилы.

    метилирование и горячие точки мутирования

    Поскольку метилированный цитозин при спонтанном дезаминировании, которое постоянно происходит в клетках, превращается в тимин, метилированные участки становятся горячими точками мутирования (Г-Ц-пара может превратиться в А-Т-пару).

  3. Еще одним существенным отличием транскрипции у эукариотов является то, что многие мРНК длительное время сохраняются в клетке в виде особых частиц— информосом, в то время как мРНК прокариотов практически еще в процессе транскрипции поступают в рибосомы, транслируются, после чего быстро разрушаются. У эукариот развита регуляция экспрессии на уровне стабильности (времени жизни), трансляционной активности, локализации мРНК.

  4. У эукариот известны и другие типы регуляции активности генов, такие, как эффект положения или дозовая компенсация. В первом случае речь идет об изменении генной активности в зависимости от конкретного окружения: перемещение гена из одного места хромосомы в другое может приводить к изменению активности как этого гена, так и близлежащих. Во втором случае нехватка одной дозы какого-либо гена (в первую очередь это относится к генам, локализованным в половых хромосомах гетерогаметного пола, когда одна из гомологичных половых хромосом либо генетически инертна, либо полностью отсутствует) фенотипически не проявляется за счет компенсаторного увеличения активности оставшегося гена. В целом же регуляция активности генов у эукариот в настоящее время активно изучается.

  5. Вместе с тем имеется много данных, указывающие, что транскрипция определенных генов эукариот также может осуществляться скоординированно. Энхансеры — активирующие элементы в ДНК эукариот — могут действовать на огромных расстояниях, в десятки и сотни тысяч пар нуклеотидов. Предполагается, что это происходит путем образования хроматиновых петелль. Энхансер может действовать на целую группу генов; распространение действия энхансеров блокируется элементами-инсуляторами. Возможно, один энхансер активирует один петлевой домен ДНК — участок ДНК, формирующий одну хромомерную петлю и содержащий совместно регулирующиеся гены. Однако далеко не всегда совместно регулирующиеся гены у эукариот расположены рядом; трудно доказать и гипотезу петлевых доменов в связи со сложностями их картирования.

    Регуляция биосинтеза аминокислот кишечной палочкой
    А — активация генов энхансерами внутри одного петлевого домена, В — активация генов в разных доменах, разграниченных инсулятором.

Источник

Аминокислоты синтезируются из промежуточных соединений, образующихся в процессах гликолиза и цикла лимонной кислоты (цикла Кребса). Предшественниками всех аминокислот в организме являются пять соединений: 3-фосфоглицерат, фос- фоенолпируват, пируват, оксалоацетат и а-кетоглутарат. Эти соединения вместе с двумя моносахаридами пентозофосфатного пути служат предшественниками всех аминокислот в бактериях и растениях.

Читайте также:  Кишечная палочка боль в спине

Фундаментальное значение для биосинтеза всех аминокислот во всех организмах имеет реакция образования глутаминовой кислоты (глутамата) из аммиака и а-кетоглутаровой кислоты (а-кетоглутарата) под действием фермента глутамат- дегидрогеназы:

Регуляция биосинтеза аминокислот кишечной палочкой

Трансаминирование а-кетокислот с использованием глутаминовой кислоты в качестве донора аминогруппы представляет собой основной путь введения а-аминогруппы при биосинтезе большинства других аминокислот.

Серин синтезируется в три стадии из промежуточного продукта гликолиза – 3-фосфоглицерата, который сначала окисляется в кетокислоту – 3-фосфогидроксипируват:

Регуляция биосинтеза аминокислот кишечной палочкой

Затем эта кетокислота подвергается трансаминированию глутаминовой кислотой и превращается в 3-фосфосерин, который далее гидролизуется до серина:
Регуляция биосинтеза аминокислот кишечной палочкой

Глицин – простейшая аминокислота, синтез которой осуществляется путем удаления концевой гидроксиметиленовой группы серина. Реакция протекает с участием кофермента – тетрагидро- фолиевой кислоты (FH4), — который служит переносчиком одноуглеродных групп. Такого рода перенос играет важную роль в синтезе нуклеотидов.

Тетрагидрофолиевая кислота образуется из птероилглутамино- вой (фолиевой) кислоты (витамин F). Четыре атома водорода, добавляющиеся при образовании тетрагидрофолиевой кислоты (FH4), выделены жирным шрифтом. Атомы N-5 и N-10 участвуют в переносе одноуглеродных групп.

Регуляция биосинтеза аминокислот кишечной палочкой

FH4 служит акцептором Р-углеродного атома, который отщепляется от серина в результате реакции, протекающей с участием пиридоксальфосфата и приводящей к образованию глицина.

Суммарно реакцию биосинтеза глицина из его предшественника – серина – можно записать следующим образом:

Регуляция биосинтеза аминокислот кишечной палочкой

Заболевания при нарушении обмена аминокислот. В сыворотке крови (в норме) содержание свободных аминокислот составляет 2,7…4,6 ммоль/л. Аминокислотный состав сыворотки соответствует составу свободных аминокислот в органах и тканях за исключением более низкого содержания аспартата и глутамата и повышенного содержания аспарагина и глутамина (25 %). Изменение содержания общего аминного азота в сыворотке и моче может служить одним из показателей нарушения соотношения ката- болических или анаболических процессов в организме, сопровождающих ряд патологий.

Увеличение содержания аминокислот в крови {гипераминоациде- мия) наблюдается при заболеваниях печени, что связано с пониженным синтезом мочевины, а также при различных тяжелых инфекционных заболеваниях, опухолях, тяжелых оперативных вмешательствах, приводящих к усиленному распаду белков тканей.

Повышение содержания аминокислот в моче (гипераминоацидурия) наблюдается при заболеваниях паренхимы печени. Это связано с нарушением процессов дезаминирования и трансминирования в печени, а также в связи с усиленным распадом клеток при тяжелых инфекционных заболеваниях, злокачественных новообразованиях, тяжелых травмах, миопатии, коматозных состояниях, гипертиреозе, при лечении кортизоном и АКТГ.

Источник

Так как транскрипция связывает ядро – “мозг” клетки, ее “банк знаний” и белки, “рабочих лошадок” клетки, то от качества и активности транскрипции зависит объем синтеза тех или иных белков, жизнедеятельность клетки, ее способность адаптироваться к окружающей обстановке.У прокариот и эукариот регуляция транскрипции происходит, естественно, по-разному, хотя некоторые моменты похожи.

Регуляция биосинтеза белка у прокариот осуществляется на уровне изменения скорости синтеза мРНК. В настоящее время принята теория оперона, сформулированная Франсуа Жакобом и Жаком Моно. В основе теории лежат следующие понятия:

1.оперон – группа тесно связанных между собой генов, которые программируют образование структурных белков и ферментов в клетке,

2.конституитивные ферменты – те, которые присутствуют в клетках всегда, независимо от ее активности и условий,

3.индуцибельные ферменты – те, которые программируются опероном и синтезируются при необходимости,

4.ген-регулятор – ген, регулирующий работу оперона, но не входящий в его состав. Он синтезирует белок-регулятор (чаще называемый белок-репрессор), который может быть в активной или неактивной форме,

Читайте также:  Кишечная палочка и понос

5.ген-операто –участок ДНК, способный св-ся с белком-регулятором, и “решающий” нужно работать РНК-полимеразе или нет.

Предложены две схемы регуляции скорости транскрипции: по механизму индукции (лактозный оперон) и по механизму репресии (триптофановый оперон). Лактозный оперон в целом отвечает за катаболизм лактозы. При изучении E.coli было замечено, что в клетке может быть две взаимоисключающие ситуации:

-активность одного из ферментов катаболизма лактозы низка, если в среде имеется глюкоза.

-активность этого фермента резко повышается в обратной ситуации, т.е. при отсутствии глюкозы и при наличии лактозы.На основании наблюдений была предложена схема регуляции оперона по механизму индукции:

1. В отсутствие лактозы активный белок-репрессор связывается с оператором и блокирует синтез мРНК, кодирующей ферменты катаболизма лактозы. В результате эти ферменты не образуются.

2. Если глюкозы нет, а лактоза есть, то последняя связывается с белком-репрессором и ингибирует его, не давая связаться с геном-оператором. Это позволяет РНК-полимеразе считывать информацию, отвечающую за синтез ферментов катаболизма лактозы, и синтезировать мРНК. Т.о., лактоза является индуктором транскрипции.

Триптофановый оперон в целом отвечает за синтез триптофана.Функционирование триптофанового оперона в некотором смысле противоположно лактозному. Регуляция осуществляется по механизму репрессии.

1. В отличие от лактозного оперона, белок-репрессор синтезируется в неактивном состоянии и не может заблокировать транскрипцию генов, кодирующих ферменты синтеза триптофана. Синтез этой аминокислоты будет в клетке продолжаться до тех пор, пока в питательной среде не появится триптофан. 

2. Триптофан соединяется с белком-репрессором и активирует его. Далее такой активный комплекс присоединяется к гену-оператору и блокирует транскрипцию. Таким образом, при наличии триптофана в среде прекращается его внутриклеточный синтез, экономятся ресурсы и энергия бактериальной клетки.

В этом случае триптофан является репрессором транскрипции.

Регуляция у эукариот .Существенное усложнение эукариотических организмов повлекло за собой появление новых способов регуляции активности транскрипции:

1. Амплификация – это увеличение количества генов, точнее многократное копирование одного гена. Естественно, все полученные копии равнозначны и одинаково активно обеспечивают транскрипцию.

2. Энхансеры – это участки ДНК в 10-20 пар оснований, способные значительно усиливать экспрессию генов той же ДНК. В отличие от промоторов они значительно удалены от транскрипционного участка и могут располагаться от него в любом направлении (к 5′-концу или к 3′-концу). Сами энхансеры не кодируют какие-либо белки, но способны связываться с регуляторными белками (подавляющими транскрипцию).

3. Сайленсеры – участки ДНК, в принципе схожие с энхансерами, но они способны замедлять транскрипцию генов, связываясь с регуляторными белками (которые ее активируют).

4. Перестройка генов. К подобным процессам относится кроссинговер – обмен участками гомологичных хромосом, и более сложный процесс – сайт-специфичная рекомбинация, которая изменяет положение и порядок нуклеотидных последовательностей в геноме.

5. Процессинг мРНК – некоторые пре-мРНК подвергаются разным вариантам сплайсинга (альтернативный сплайсинг) в результате чего образуются разные мРНК, и соответственно, белки с разной функцией.

6. Изменение стабильности мРНК – чем выше продолжительность жизни мРНК в цитозоле клетки, тем больше синтезируется соответствующего белка.

Лекарственная регуляция транскрипции

Ингибирование. 1. Гетероциклические соединения доксорубицин, дауномицин и актиномицин D обладают способностью интеркалировать (встраиваться между нитей молекулы ДНК) между двумя соседними парами оснований Г-Ц. В результате возникает препятствие для движения РНК-полимеразы (“заедание молнии”) и остановка транскрипции.

2. Рифампицин связывается с β-субъединицей РНК-полимеразы прокариот и ингибирует ее. Благодаря такой избирательности действия рифампицин действует только на бактерии и является препаратом для лечения туберкулеза.

3. α-Аманитин, октапептид бледной поганки (Amanita phalloides) блокирует РНК-полимеразу II эукариот и предотвращает продукцию мРНК.

Активация. Активация транскрипции используется в клинике намного реже и заключается в применении аналогов стероидных гормонов для достижения анаболического эффекта в органе-мишени.

Многие вещества обладают способностью связываться с элементами рибосом или другими факторами трансляции. Некоторые из этих веществ используются в качестве лекарственных средств, которые в состоянии действовать на разных уровнях трансляции, например:

1. Инактивация факторов инициации

интерферон активирует внутриклеточные протеинкиназы, которые, в свою очередь, фосфорилируют белковый фактор инициации ИФ-2 и подавляют его активность.

2. Нарушение кодон-антикодонового взаимодействия

стрептомицин присоединяется к малой субъединице и вызывает ошибку считывания первого основания кодона.

3. Блокада стадии элонгации

тетрациклины блокируют А-центр рибосомы и лишают ее способности связываться с аминоацил-тРНК,

левомицетин связывается с 50S-частицей рибосомы и ингибирует пептидил-трансферазу,

эритромицин связывается с 50S-частицей рибосомы и ингибирует транслоказу,

пуромицин по структуре схож с тирозил-тРНК, входит в А-центр рибосомы и участвует в пептидил-трансферазной реакции, образуя связь с имеющимся пептидом. После этого комплекс пуромицин-пептид отделяется от рибосомы, что останавливает синтез белка.

Источник