Регуляция поджелудочного и кишечного соков

Регуляция поджелудочного и кишечного соков thumbnail

Регуляция
секреции поджелудочного сока осуществляется
в 3 фазы:

1.
Мозговая (сложнорефлекторная) фаза.
Осуществляется через комплекс условных
и безусловных рефлексов. Вид, запах и
вкус пищи активируют нейронывагусав центре регуляции панкреатической
секреции. Окончания вагуса в поджелудочной
железе выделяютацетилхолин,
который стимулирует синтез панкреатического
сока.

2.
Желудочная (нейро-гуморальная) фаза.
Возникает при нахождении пищи в желудке.
За счетвагуса, гастрина,
серотонина
стимулируется секреция
поджелудочного сока.

3.
Кишечная фаза.Кислый
химус вызывает в кишечнике
выделение S-клетками сек­ретина
(белковый гормон). Секретин
поступают
в кровь и
стимулирует выделение из подже­лудочной
железы в тонкий кишечник панкреа­тического
сока, содержащего много НСО3-,
что нейтрализует
НС1 желудочного сока и ингибирует пепсин.
В результате рН возрастает
от 1,5-2,0 до 7,0.

Поступление
пептидов в тонкий кишечник вы­зывает
секрецию холецистокинина
(белкового гормона) в I-клетках,
который сти­мулирует
выделение панкреатического сока с
большим содержанием ферментов.

Регуляция кишечной секреции

Регуляция
деятельности желез тонкой кишки
осуществляется местными нервно-рефлекторными
механизмами, а также гуморальными
влияниями и ингредиентами химуса.
Механическое раздражение слизистой
оболочки тонкой кишки вызывает выделение
жидкого секрета с малым содержанием
ферментов. Местное раздражение слизистой
кишки продуктами переваривания белков,
жиров, соляной кислотой, панкреатическим
соком вызывает отделение кишечного
сока, богатого ферментами. Усиливают
кишечное сокоотделение ГИП, ВИП, мотилин.
Гормоны энтерокринин и дуокринин,
выделяемые слизистой оболочкой тонкой
кишки, стимулируют соответственно
секрецию либеркюновых и бруннеровых
желез. Тормозное действие оказывает
соматостатин.

Мотилин
(в Мо-клетках) – стимулирует активность
гладко-мышечной клеток кишечника.

6. Всасывание аминокислот в кишечнике

Вса­сывание
L-аминокислот
(но не D)
— активный
процесс, в результате которого аминокислоты
переносятся через кишечную стенку
от слизистой её поверхности в кровь.

Известно
пять
специфических транспортных
систем, каждая из которых функционирует
для переноса определённой группы близких
по
строению аминокислот:

  1. нейтральных,
    короткой боковой цепью (аланин,
    серии, треонин);

  2. нейтральных,
    с длинной или разветвлённой боковой
    цепью (валин, лейцин, изолейцин);

  3. с
    катионными радикалами (лизин, аргинин);

  4. с
    анионными радикалами (глутаминовая и
    аспарагиновая кислоты);

  5. иминокислот
    (пролин, оксипролин).

Существуют
2 основных механизма переноса аминокислот:
симпорт с натрием и γ-глутамильный
цикл.

1.
Симпорт аминокислот с
Na+.

Симпортом
с Nа+
переносятся аминокислоты из первой и
пятой группы, а также метионин.

L-аминокислота
поступает в энтероцит путём симпорта
с ионом Na+.
Далее специфическая транслоказа
переносит ами­нокислоту
через мембрану в кровь. Обмен ионов
натрия меж­ду
клетками осуществляется путём
первично-активного транс­порта
с помощью Na+,
К+-АТФ-азы.

2.
γ-Глутамильный цикл.

γ-глутамильный
цикл переносит некоторые
нейтральные аминокислоты (фенилаланин,
лейцин) и аминокислоты с катион­ными
радикалами (лизин)
в кишечнике, почках и, по-ви­димому,
мозге.

В
этой системе участвуют 6 ферментов, один
из
которых находится в клеточной мембране,
а остальные
— в цитозоле.
Мембранно-связанный
фермент γ-глутамилтрансфераза
(гликопротеин)
катализирует перенос
γ-глутамильной группы от глутатиона на
транспортируемую
аминокислоту и последую­щий
перенос комплекса в клетку. Амнокислота
отщепляется
от у-глутамильного
остатка под действием фермента
у-глутамилциклотрансферазы.

Дипептид
цистеинилглицин расщепляется под
действием
пептидазы на 2 аминокислоты — цистеин
и глицин. В результате этих 3 реакций
про­исходит перенос одной молекулы
аминокислоты в
клетку (или внутриклеточную структуру).
Сле­дующие
3 реакции обеспечивают регенерацию
глутатиона,
благодаря чему цикл повторяется
многократно.
Для транспорта в клетку одной мо­лекулы
аминокислоты с участием у-глутамильного
цикла затрачиваются 3 молекулы АТФ.

Поступление
аминокислот в организм осуществляется
двумя путя­ми:
через воротную систему печени, ведущую
прямо
в печень, и по лимфатическим сосудам,
сообщающимся
с кровью через грудной лимфа­тический
проток. Максимальная концентрация
аминокислот в крови
достигается через 30—50 мин
после приёма белковой пищи (углеводы и
жиры
замедляют всасывание аминокислот).
Аминокислоты
при всасывании конкурируют друг с другом
за специфические
участки связывания. Например, всасывание
лейцина (если концентрация его достаточно
высока) уменьшает всасывание изолейцина
и валина.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Роль поджелудочной железы в пищеварении

Пищеварение в кишечнике

Пища, попавшая в двенадцатиперстную кишку подвергается воздействию

поджелудочного, кишечного соков и желчи. Поджелудочный сок вырабатывается экзокринными клетками поджелудочной железы. Это бесцветная жидкость щелочной реакции. рН=7,4 – 8,4. В течение суток выделяется 1,5 – 2,0 л сока. В состав сока входит 98,7% воды и 1,3% сухого остатка.

Сухой остаток содержит:

1.Минеральные вещества. Катионы натрия, калия, кальция, магния. Гидрокаробонат, фосфат, сульфат анионы, анионы хлора. Из минеральных веществ преобладает гидрокарбонат натрия. Его 1% из 1,3% сухого остатка. Он определяет щелочную реакцию сока. Благодаря ей кислый химус желудка приобретает нейтральную или даже слабощелочную реакцию. Это создает оптимальную среду для действия панкреатических и кишечных ферментов с рН=7 – 8.

2.Простые органические вещества. Мочевина, мочевая кислота, креатинин, глюкоза.

3.Ферменты. Они играют важнейшую роль в переваривании белков, жиров и углеводов и делятся на следующие группы:

1.Пептидазы. К ним относятся такие эндопептидазы, как трипсин, химотрипсин и эластаза. Они расщепляют внутренние связи белков с образованием поли- и олигопептидов. Экзопептидазами являются карбоксипептидазы А и В. Они отщепляют конечные аминокислотные цепи с образованием ди- трипептидов и аминокислот. Все эти протеолитические ферменты выделяются железой в неактивной форме в виде трипсиногена, химотрипсиногена, и прокарбоксипетидаз. При поступлении сока в 12-перстную кишку, трипсиноген подвергается воздействию фермента энтерокиназы. От него отщепляется белок ингибитор и трипсиноген переходит в активный трипсин. Этот первоначально образовавшийся трипсин в дальнейшем осуществляет активацию остального трипсиногена и других проферментов поджелудочного сока. Ингибитор трипсина образуется в тех же железистых клетках, что и трипсин. Это предупреждает воздействие пептидаз на клетки железы.

2.Липазы. Ими являются панкреатическая липаза и фосфолипаза А. Липаза расщепляет нейтральные жиры до жирных кислот и глицерина, а фосфолипаза фосфолипиды.

3.Карбогидразы. Это a-амилаза сока, которая расщепляет крахмал до мальтозы.

4.Нуклеазы. ДНК-аза и РНК-аза. Они гидролизуют нуклеиновые кислоты до нуклеотидов.

Проферменты и ферменты поджелудочной железы синтезируются рибосомами ацинарных клеток и сохраняются в них в виде гранул. В период пищеварения они выделяется в ацинарные протоки и разбавляются в них водой, содержащий электролиты. В протоках анионы хлора обмениваются на гидрокарбонат анионы. Поэтому гидрокарбонат натрия накапливается в соке. Этот процесс в клетках протоков происходит с участием карбоангидразы и активного транспорта.

Регуляция панкреатической секреции осуществляется рефлекторными и гуморальными механизмами. Но главными являются гуморальные. Выделяют три фазы поджелудочной секреции.

1.Сложнорефлекторная фаза. Она запускает секрецию сока. Включает условно-рефлекторный и безусловно-рефлекторный периоды. сокоотделение начинается через 2-3 минуты после начала приема пищи. Это связано с воздействием условно-рефлекторных факторов на рецепторы зрительной, слуховой и обонятельной сенсорных систем. При воздействии пищевых масс на механо-, термо- и вкусовые рецепторы полости рта и глотки включаются безусловно-рефлекторные механизмы. Нервные импульсы от рецепторов поступают в секреторный центр продолговатого мозга. От него по эфферентным волокнам вагуса они идут к ацинарным клеткам. Симпатические нервы тормозят секрецию.

2.Желудочная фаза. Начинается с момента поступления пищевого комка в желудок. Он также раздражает механо- и хеморецепторы желудка, импульсы от которых идут в центр секреции. Затем по вагусу к поджелудочной железе. Наиболее сильными рефлекторными стимуляторами секреции панкреатического сока в эту фазу являются соляная кислота, продукты гидролиза жиров и углеводов. Возбуждает секрецию и вырабатывающийся в желудке гастрин.

Регуляция поджелудочного и кишечного соков

3.Кишечная фаза. Развивается после поступления химуса в двенадцатиперстную кишку. Рефлекторные механизмы в этой фазе играют незначительную роль. Соляная кислота, содержащаяся в химусе, вызывает выделение S-клетками слизистой двенадцатиперстной кишки гормона секретина (Долинский и Попельский, 1898 г. Бейлисс и Старлинг, 1902 г.). Секретин значительно усиливает поступление из эпителиальных клеток в протоки гидрокарбонат анионов. В результате выделяется большое количество сока богатого гидрокарбонатом натрия. Одновременно соляная кислота стимулирует образование I-клетками кишки гормона холецистокинина-панкреозимина (ХЦК-ПЗ). Он вызывает высвобождение проферментов из гранул ацинарных клеток, а поэтому их выделение в сок. Кроме того панкреатическую секрецию в этой фазе усиливают вазоактивный интестинальный пептид (ВИП), серотонин, инсулин. Тормозящее влияние на выделение поджелудочного сока оказывают глюкагон, желудочный ингибирующий пептид (GIP) и соматостатин.

В лаборатории И.П. Павлова было установлено, что наибольший объем сока выделяется на углеводы, т.е. белый хлеб, а меньше всего на жиры. Т.е. жиры тормозят секрецию.

В эксперименте секреторную функцию поджелудочной железы исследуют путем наложения фистулы выводного протока. В клинике с помощью дуоденального зондирования тонким зондом. Для стимуляции сокоотделения через зонд вводят 0,5% раствор соляной кислоты или секретин. Затем определяют содержание ферментов в соке. Кроме того, функцию поджелудочной железы оценивают с помощью определения панкреатических ферментов в крови и моче.

Очень тяжелым заболеванием поджелудочной железы является острый панкреатит. При нем наблюдается преждевременная активация трипсина, фофсолипазы А, эластазы. Возникает самопереваривание клеток железы. Поэтому применяют ингибиторы протеолиза, например контрикал.

Источник

Победа Глазырина, Татьяна Бурмистрова и др. - Механизмы регуляции вегетативных...

Мозговая, или сложнорефлекторная, фаза секреции панкреатического сока также запускается в действие раз­дражением “дистантных” рецепторов при виде и запахе пищи, рецепторов полости рта и глотки во время еды. Реализуется мозговая фаза через ядра блуждающих нервов. Панкреатический сок в течение этой фазы со­держит большое количество ферментов.

Мозговая фаза панкреатической секреции впервые была доказана А. В. Тонких в 1924 г. в опытах на эзофаготомированных- собаках, имеющих хроническую фистулу протока поджелудочной железы. Мнимое корм­ление таких собак вызывало секрецию панкреатического сока несмотря на то, что предварительно полностью исключался переход содержимого желудка в двенадца­типерстную кишку, т. е. исключался основной гумораль­ный механизм регуляции. По-видимому, главное назначение мозговой фазы панкреатической секреции состоит в мобилизации ферментных запасов железы для переваривания пищевых веществ, поступающих в кишечник.

Желудочная фаза секреции панкреатического сока развивается при поступлении пищи в желудок. Стиму­ляция секреции панкреатического сока из желудка осу­ществляется двумя путями. Растяжение фундального отдела желудка пищей приводит к возбуждению механорецепторов и по механизму ваговагального рефлекса вызывает рефлекторное увеличение сокоотделения в под­желудочной железе. После перерезки блуждающих нервов рефлекс с фундального отдела на панкреатическую железу исчезает. Второй путь регуляции в данную фазу осуществляется с участием гастрина. Механические и химические раздражения слизистой пилорического отдела желудка через интрамуральные нервные сплетения сти­мулируют выработку гастрина в специализированных клетках слизистой желудка и кишечника. Гастрин, по­ступая в кровь, усиливает не только желудочную, но и панкреатическую секрецию.

В желудочную фазу регуляции секреции панкреати­ческого сока, так же как и в мозговую, поджелудочная железа вырабатывает сок с высокой концентрацией ферментов.

Кишечная фаза секреции панкреатического сока развивается под влиянием соляной кислоты и продуктов частичного гидролиза пищевых веществ, поступивших в двенадцатиперстную кишку из желудка. В слизистой кишки в этих условиях усиливается образование секретина и холецистокинина-панкреозимина, которые гуморальным путем вызывают выделение большого количества панкре­атического сока, содержащего не только много фермен­тов, но и гидрокарбонатов. Совместное действие секретина и холецистокинина-панкреозимина на поджелудочную железу приводит к взаимному усилению их эффектов. Как уже указывалось, участие поджелудочной железы в процессах пищеварения обеспечивается ее экзокринным аппаратом. Функция этого аппарата определяется в первую очередь рефлекторными механизмами регуляции, реализующимися с рецепторов желудочно-кишечного тракта и гормональными влияниями энтериновой системы (эндокринные клетки слизистой желудка и кишечника). Но кроме того, состояние и функция экзокринного от­дела поджелудочной железы в значительной мере зависят от состояния и функции островков Лангерганса – эндо­кринного аппарата железы. Гормон β-клеток островков Лангерганса – инсулин регулирует процессы синтеза ферментов в экзокринных клетках железы (трофическое действие) и повышает ферментативную активность пан­креатического сока, объем и содержание гидрокарбонатов в соке при этом существенно не меняются. Действие инсулина на выработку ферментов поджелудочной же­лезой может быть и не связанным с его влиянием на уровень сахара в крови. Недостаток инсулина (при диабе­те) приводит к нарушению зкзокринной функции под­желудочной железы.

Гормон α-клеток островкового аппарата – глюкагон тормозит внешнесекреторную функцию поджелудочной железы, в наибольшей Степени уменьшает секрецию фер­ментов. Тормозящий эффект на панкреатическую секрецию развивается при действии очень малых доз глюкагона (близких к физиологическим) и имеет короткий латентный период.

Взаимодействия между экзо- и эндокринным отделами поджелудочной железы, имеющие отношение к ее пи­щеварительным функциям, не исчерпываются действием гормонов островков Лангерганса на экзокринные клетки. Установлено, что интестинальные гормоны – секретин, холецистокинин-панкреозимин, гастрин – усиливают об­разование инсулина β-клетками островков, но действие этих гормонов проявляется только при нормальном состоянии экзокринного отдела. Нарушение внешнесекреторной функции железы при ее воспалениях сопровожда­ется изменением реактивности островкового аппарата по отношению к эндогенным гастроинтестинальным гор­монам, снижением активности β-клеток и дефицитом инсулина, что вторично может ухудшить образование панкреатического сока, особенно продукцию его фермен­тов.

Другие особенности взаимодействия внешне- и внутри­секреторной деятельности поджелудочной железы, не имеющие прямого отношения к роли поджелудочной железы в пищеварительных процессах, нами не обсуж­даются.

Регуляция секреции и выхода желчи

Желчь – секрет печеночных клеток (гепатоцитов), имеющий свойства пищеварительного сока; одновремен­но это экскрет, в составе которого через желудочно-кишечный тракт выводятся из организма некоторые экзо- и эндогенные вещества.

Поступая в двенадцатиперстную кишку через общий желчный проток, желчь участвует в пищеварении, уси­ливая действие ферментов, панкреатического и кишечного соков, изменяя физико-химическое состояние химуса, осо­бенно жиров и продуктов их гидролиза. Желчь эмуль­гирует жиры. Моноглицериды и жирные кислоты, осво­бождающиеся при гидролизе жира, образуют с желчны­ми кислотами смешанные мицеллы; в мицеллярной фор­ме они транспортируются к клеткам слизистой.

Образуется желчь в печени постоянно, а выход ее в кишечник совершается периодически, во время пище­варения. Вне пищеварения желчь накапливается в желчном пузыре. Регуляция желчеобразования и желчевыделения представлена на схеме 8.

Победа Глазырина, Татьяна Бурмистрова и др. - Механизмы регуляции вегетативных...

Акт еды и пищеварение усиливают желчеобразование рефлекторным и гуморальным путем, при этом интен­сивность секреции зависит от количества и химического состава пищи. Мощными раздражителями. усиливающими желчеобразование, являются белки и продукты их рас­щепления, жиры и жирные кислоты. В естественных ус­ловиях рефлекторное усиление желчеобразования про­исходит при раздражении пищей механо- и хеморецепторов ротовой полости, желудка и двенадцатиперстной кишки. Возбуждение с рецепторов пищеварительной труб­ки передается по афферентным нервным волокнам в продолговатый мозг на центры блуждающих нервов и по эфферентным волокнам этих нервов к печени. В экспе­риментах установлено, что при раздражении блуждаю­щего и диафрагмального нервов секреция желчи уси­ливается, а при раздражении чревных нервов – тор­мозится. Наряду с безусловнорефлекторной возможна и условнорефлекторная регуляция желчеобразования.

Гуморальная регуляция желчеобразования осуще­ствляется при участии интестинальных гормонов. Гастрин, секретин, холецистокинин-панкреозимин обладают выра­женным желчегонным действием. Желчеобразование усиливается также под влиянием самой желчи и ее ком­понентов, попадающих в кровь. Тормозит секрецию желчи гепатоцитами повышение гидростатического давления в желчном пузыре и желчевыводящих путях.

Образованная гепатоцитами, желчь вне пищеварения перемещается (по градиенту давления) по желчевыделительным путям в желчный пузырь, где и накапливается.

Выход желчи в двенадцатиперстную кишку происхо­дит через 5-10 мин после приема пищи и продолжа­ется 3-6 ч. Выведение желчи в кишечник обусловлено сог­ласованной деятельностью мускулатуры желчного пузы­ря и сфинктера общего желчного протока, или сфин­ктера Одди. При сокращении мышц сфинктера Одди желчь не выходит в кишку и накапливается в пузыре, мускулатура которого в этот период расслаблена. При сокращении мускулатуры желчного пузыря сфинк­тер Одди расслабляется и желчь поступает в кишку.

Выделение желчи в кишечник также регулируется рефлекторным и гуморальным путями. Эфферентными нервами, передающими влияние, из центральной нервной системы на мышцы желчного пузыря и сфинктера Одди, являются блуждающие и симпатические нервы. Раздра­жение блуждающих нервов вызывает сокращение мышц пузыря и расслабление сфинктера Одди, способствуя выходу желчи в кишечник. Противоположное влияние на мускулатуру пузыря и сфинктера оказывает симпати­ческий нерв. Возбуждение эфферентных нервных волокон может вызвать разные реакции, определяемые исходным тонусом мускулатуры или силой раздражителя.

Рефлекторная стимуляция выхода желчи в кишечник вызывается раздражением дистантных рецепторов рецеп­торов ротовой полости во время акта еды и продолжает­ся по мере продвижения пищи в желудок и кишечник. Основным рецепторным полем, раздражение которого вы­зывает выделение желчи в кишечник, является стенка пилорического отдела желудка и двенадцатиперстной кишки. Усиление сократительной активности привратника и двенадцатиперстной кишки приводит к раздражению механорецепторов в их стенках и рефлекторно возбуждает выход желчи. Таким образом, интенсивный выход желчи в кишечник приурочен к поступлению туда химуса. Ре­флекторная дуга желчевыделительного рефлекса может замыкаться как в продолговатом мозге (ядро блуждаю­щего нерва), так и на уровне интрамуральных сплетений. Интрамуральные сплетения желчевыделительного аппара­та имеют тесную связь с ауэрбаховым сплетением две­надцатиперстной кишки.

Источник