Репликация хромосомы кишечной палочки

Репликация хромосомы кишечной палочки thumbnail

Хеликаза

Раскручивание, или расплетание, спирали происходит в локальном участке ДНК. Эту реакцию осуществляет хеликаза — ДНК-зависимая АТРаза, использующая энергию гидролиза АТР для расплетания двойной спирали ДНК. Хеликазы имеют кольцевую (тороидальную) структуру, образованную шестью субъединицами. Такие гексамерные хеликазы кольцеобразной формы обнаружены у фагов, вирусов, бактерий, архей, эукариот (рис.). Хеликаза, движимая гидролизом АТР, однонаправленно перемещается по одной из цепей ДНК (вероятно, за счет ее конформационных изменений), расплетая перед собой двойную спираль, в результате чего возникает вилка (Y) из двуцепочечного участка ДНК и двух одноцепочечных ветвей.

ДСБ-белки (SSB-белки)

Белки, связывающиеся с одноцепочечной ДНК. ДСБ-белки связываются с сахарофосфат-ным остовом одиночных цепей ДНК, не закрывая оснований, что не мешает комплемен-тарному присоединению нуклеотидов в ходе репликации. ДСБ-белок Е. coli наиболее изучен, он представляет собой тетрамер, характеризуется высокой степенью асимметрии молекулы.ДСБ-белки стабилизируют одноцепочечную ДНК, обеспечивая условия для комплементарного спаривания, удаляют Возможные элементы вторичной структуры ДНК(например, предотвращают образование шпилечных структур); связывание одноцепочечной ДНК с ДСБ-белками стимулирует ДНК-полимеразу и повышает точность ее работы. У эукариот таковым белком является ядерный репликативный белок A (RPA), представляющий гетеротример с субъединицами 70, 32 —34 и 11 — 14 кДа.

Модель инициации репликации ДНК у Escherichia coli

Геном Е. coli реплицируется двунаправленно от одной точки начала репликации, получившей название локус ori С. Инициация репликации начинается с узнавания инициаторными белками специфических последовательностей в точках начала репликации ДНК.

Хромосома Е. coli содержит единственную область начала репликации (oriC), размер которой составляет 258 н.п. В oriC имеется пять консенсусных девятинуклеотидных сайтов связывания инициаторного белка Dna А, названных Dna А-боксами. В левой части oriC наряду с Dna А распознает область начала репликации и образует комплекс с други-ми белками.Сначала белок Dna А в комплексе с АТР взаимодействует с Dna А-боксами. С помощью электронной микроскопии исходный комплекс обнаруживается в виде компакт-ной эллипсоидной структуры, содержащей -20 мономеров Dna А, которая закрывает oriC. В этом комплексе частично расплетаются АТ-богатые повторы и формируется открытый комплекс. В этом процессе участвуют некоторые вспомогательные белки, которые помогают инициатору Dna А раскручивать и изгибать ДНК (ранее они обозначались n, n’, n”, i, а. В последнее время их обозначают IME, FIS-факторы и т.д.).

Белок Dna В (хеликаза) в виде гексамеров в комплексе с шестью мономерами белка Dna С, каждый из которых связывает одну молекулу АТР, а именно (Dna В —Dna С—АТР)6, взаимодействует с одноцепочечными участками частично расплетенной ДНК. В этом комплексе хеликазная активность Dna В блокирована. Транслокация Dna В (хеликазы) от места ее первоначального вхождения в комплекс к месту старта репликативной вилки и высвобождение из комплекса белка Dna С, вызывает активацию хеликазы. Далее хеликаза взаимодействует с белком Dna G (праймазой), и этот комплекс играет ключевую роль в инициации репликации на oriС. Оба фермента обеспечивают сопряженное функциони-рование двух репликативных вилок, движущихся в противоположные стороны; хеликаза начинает расплетать дуплекс ДНК, праймаза синтезирует первые затравки. В сформиро-ванном праймирующем комплексе присутствие белка Dna А не требуется, и он после освобождения из комплекса может быть повторно использован для репликации на другом оriС.

Сложный комплекс белков, осуществляющий инициацию репликации, получил название

праймосомы. Праймосома в свою очередь является компонентом еще более сложного комплекса — реплисомы, осуществляющей процесс полной репликации. Завершающим этапом сборки реплисомы является взаимодействие праймосомы с ДНК-полимеразой III.

Для продолжения синтеза ДНК необходимо участие еще двух белков, двигающихся впе-реди репликативной вилки и выполняющих функцию геликаз – геликазы II и белка rep.

Этапы инициации репликации ДНК E. coli.1 – белок dna A формирует тетрамеры, связывающиеся со специфическими сайтами из 9 пар нуклеотидов в пределах локуса ori C; 2 – тетрамеры dna A образуют комплекс, индуцирующий плавление ДНК

Терминация репликации происходит тогда, когда встречаются две репликативные вилки при удвоении кольцевых молекул ДНК. Непрерывный рост лидирующей и отстающей цепей приводит к совмещению 3′ и 5′-концов одной цепи, либо в точке начала репликации (однонаправленная репликация, либо – при двунапраленной репликации – в середине кольца). Кольца в местах встречи соединяются лигазой, при этом они оказываются попарно сцепленными, т.е. образуется катенан.

Источник

Основу генетического аппарата кишечной палочки составляет бактериальная хромосома, входящая в состав нуклеоида – ядерноподобной структуры. Нуклеоид по морфологии напоминает соцветие цветной капусты и занимает примерно 30% объема цитоплазмы. Бактериальная хромосома представляет собой кольцевую двуспиральную правозакрученную молекулу ДНК, которая свернута во вторичную спираль. Длина бактериальной хромосомы составляет примерно 4,7 млн. нуклеотидных пар (п.н.), или ~ 1,6 мм. Вторичная структура хромосомы поддерживается с помощью гистоноподобных (основных) белков и РНК. Точка прикрепления бактериальной хромосомы к мезосоме (складке плазмалеммы) является точкой начала репликации ДНК (эта точка носит название OriC). Бактериальная хромосома удваивается перед делением клетки, и сестринские копии распределяются по дочерним клеткам с помощью мезосомы. Репликация ДНК идет в две стороны от точки OriC и завершается в точке TerC. Молекулы ДНК, способные себя воспроизводить путем репликации, называются репликоны. ген вирусный полипротеин

Одна бактериальная хромосома содержит до 1000 известных генов. Обычно это гены “домашнего хозяйства”, то есть необходимые для поддержания жизнедеятельности клетки.

Все множество известных генов делится на 10 групп, контролирующих следующие процессы (в скобках указано количество изученных генов):

  • 1. Транспорт различных соединений и ионов в клетку (92 гена).
  • 2. Реакции, поставляющие энергию, включая катаболизм различных природных соединений (138 генов).
  • 3. Реакции синтеза аминокислот, нуклеотидов, витаминов, компонентов цепей переноса электронов, жирных кислот, фосфолипидов и некоторых других соединений (221 гена).
  • 4. Генерация АТФ при переносе электронов (15 генов).
  • 5. Катаболизм макромолекул (22 гена).
  • 6. Аппарат белкового синтеза (164 гена).
  • 7. Синтез нуклеиновых кислот, включая гены, контролирующие рекомбинацию и репарацию (49 генов).
  • 8. Синтез клеточной оболочки (42 гена).
  • 9. Хемотаксис и подвижность (39 генов).
  • 10. Прочие гены, в том числе с неизвестной функцией (110 генов).
Читайте также:  Ципролет при кишечной палочке

В лаг-фазе в клетке имеется одна бактериальная хромосома, но в фазе экспоненциального роста ДНК реплицируется быстрее, чем происходит деление клетки; тогда число бактериальных хромосом на клетку увеличивается до 2…4…8. Такое состояние генетического аппарата называется полигаплоидностью.

При делении клетки сестринские копии бактериальной хромосомы распределяются по дочерним клеткам с помощью мезосомы.

Кроме бактериальной хромосомы в состав генетического аппарата прокариот входит множество мелких репликонов – плазмид – кольцевых молекул ДНК длиной в тысячи п.н. Плазмиды такого размера содержат несколько десятков генов. Обычно это “гены роскоши”, обеспечивающие устойчивость к антибиотикам, тяжелым металлам, кодирующие специфические токсины, а также гены конъюгации и обмена генетическим материалом с другими особями. Известны также мелкие плазмиды длиной 2…3 тпн, кодирующие не более 2 белков. У многих бактерий открыты мегаплазмиды длиной порядка миллиона пн, то есть немногим меньше бактериальной хромосомы. Плазмиды могут быть прикреплены к мезосомам, могут находиться в автономном состоянии и в интегрированном состоянии. В последнем случае плазмида включается в состав бактериальной хромосомы в определенных точках attB. Таким образом, одна и та же плазмида может включаться в состав хромосомы и может вырезаться из нее. Существуют плазмиды, представленные одной копией – они реплицируются синхронно с ДНК бактериальной хромосомы. Другие плазмиды могут быть представлены многими копиями, и их репликация происходит независимо от репликации бактериальной хромосомы. Репликация свободных плазмид часто протекает по принципу “катящегося кольца” – с одной кольцевой матрицы ДНК считывается “бесконечная” копия.

Репликация плазмид может быть синхронизирована с репликацией бактериальной хромосомы, но может быть и независимой. Соответственно, распределение плазмид по дочерним клеткам может быть точным или статистическим.

Молекулярно-генетические системы управления

(на примере лактозного оперона кишечной палочки)

Все гены организма можно разделить на две большие группы: конститутивные и индуцибельные.

Конститутивные гены постоянно включены: они функционируют на всех стадиях онтогенеза и во всех тканях. К конститутивным относятся гены, кодирующие тРНК, рРНК, ДНК-полимеразы, РНК-полимеразы, белки-гистоны, белки рибосом и т.д. Иначе говоря, это “гены домашнего хозяйства”, или существенные гены без которых клетки не могут существовать.

Индуцибельные гены функционируют в разных тканях на определенных этапах онтогенеза, они могут включаться и выключаться, их активность может регулироваться по принципу “больше или меньше”. Это тканеспецифичные гены, или “гены роскоши”, которые часто являются несущественными. Включение индуцибельных генов называется индукцией, а выключение – репрессией. Регуляцию активности генов производят молекулярно-генетические системы управления.

Переключение генов лучше всего изучено у бактерий – одноклеточных организмов. Рассмотрим механизмы регуляции активности генов на примере лактозного оперона кишечной палочки.

Оперон – участок бактериальной хромосомы, включающий следующие участки ДНК: Рпромотор, Ооператор, Z, Y, Аструктурные гены, Ттерминатор. (В состав других оперонов может входить до 10 структурных генов.)

Промотор служит для присоединения РНК-полимеразы к молекуле ДНК с помощью комплекса CAP-цАМФ (CAP – специфический белок; в свободной форме является неактивным активатором; цАМФ – циклоаденозинмонофосфат – циклическая форма аденозинмонофосфорной кислоты).

Оператор способен присоединять белок-репрессор (который кодируется соответствующим геном). Если репрессор присоединен к оператору, то РНК-полимераза не может двигаться вдоль молекулы ДНК и синтезировать иРНК.

Структурные гены кодируют три фермента, необходимые для расщепления лактозы (молочного сахара) на глюкозу и галактозу. Молочный сахар лактоза – менее ценный продукт питания, чем глюкоза, поэтому в присутствии глюкозы сбраживание лактозы является невыгодным для бактерии процессом. Однако при отсутствии глюкозы бактерия вынуждена переходить на питание лактозой, для чего синтезирует соответствующие ферменты Z, Y, А.

Терминатор служит для отсоединения РНК-полимеразы после окончания синтеза иРНК, соответствующей ферментам Z, Y, А, необходимым для усвоения лактозы.

Для регуляции работы оперона необходимы еще два гена: ген, кодирующий белок-репрессор, и ген, кодирующий белок СYА. Белок СYА катализирует образование цАМФ из АТФ. Если в клетке имеется глюкоза, то белок СYА вступает с ней в реакцию и переходит в неактивную форму. Таким образом, глюкоза блокирует синтез цАМФ и делает невозможным присоединение РНК-полимеразы к промотору. Итак, глюкоза является репрессором.

Если же в клетке имеется лактоза, то она взаимодействует с белком-репрессором и превращает его в неактивную форму. Белок-репрессор, связанный с лактозой, не может присоединиться к оператору и не преграждает путь РНК-полимеразе. Итак, лактоза является индуктором.

Предположим, что первоначально в клетке имеется только глюкоза. Тогда белок-репрессор присоединен к оператору, а РНК-полимераза не может присоединиться к промотору. Оперон не работает, структурные гены выключены.

При появлении в клетке лактозы и при наличии глюкозы белок-репрессор отщепляется от оператора и открывает путь РНК-полимеразе. Однако РНК-полимераза не может присоединиться к промотору, поскольку глюкоза блокирует синтез цАМФ. Оперон по-прежнему не работает, структурные гены выключены.

Читайте также:  Кишечная палочка и димексид

Если же в клетке имеется только лактоза, то белок-репрессор связывается с лактозой, отщепляется и открывает путь РНК-полимеразе. В отсутствии глюкозы белок СYА катализирует синтез цАМФ, и РНК-полимераза присоединяется к промотору. Структурные гены включаются, РНК-полимераза синтезирует иРНК, с которой транслируются ферменты, обеспечивающие сбраживание лактозы.

Таким образом, лактозный оперон находится под двойным контролем индуктора (лактозы) и репрессора (глюкозы).

Геномы простейших

Число генов в геноме инфузории оказалось таким же, как у человека.

Инфузории – самые сложные из одноклеточных организмов, и вообще – верх того, что смогла создать эволюция на одноклеточном уровне. Строение инфузорий во многом напоминает многоклеточных, несмотря что клетка всего одна. Например, у многоклеточных животных различают линию генеративных клеток, геном которых оберегается от всяческих изменений (ведь именно этот геном будет передан по наследству потомкам), и соматические клетки, геном которых может меняться по мере надобности (например, могут метилироваться или вовсе выбрасываться какие-то части генома, не нужные в данной ткани или органе, или могут происходить сложные целенаправленные перестройки, как в лимфоцитах). Генетические изменения соматических клеток в норме не передаются по наследству. У инфузорий тоже есть два генома – генеративный и вегетативный (соматический). Первый хранится в маленьком ядре (микронуклеусе), содержит много транспозонов и некодирующих участков, и в целом находится в нерабочем состоянии. Например, многие гены в нем разорваны на куски и перемешаны в такой клубок, что никаким сплайсингом не распутать. Но, тем не менее, это нормальный, хотя и сильно запущенный, большой эукариотический геном. Кстати, число генов у инфузорий и у человека примерно одинаково (порядка 30 тысяч). Геном микронуклеуса, естественно, не работает (он и не смог бы), и служит только для передачи генов потомству при половом размножении.

Вегетативный (соматический, рабочий) геном инфузории хранится в большом ядре (макронуклеусе) и по многим параметрам сильно отличается от других эукариотических геномов. У инфузории Oxytricha, которой посвящена обсуждаемая статья, он состоит из многих тысяч отдельных “нанохромосом”. Это настоящие хромосомы, только очень маленькие, обычно содержащие всего один ген. Каждая нанохромосома, или МАК-хромосома, присутствует в макронуклеусе в очень большом количестве копий. Соответственно, и весь вегетативный геном многократно сдублирован, то есть макронуклеус является полиплоидным (микронуклеус – диплоидное ядро).

По размеру вегетативный геном окситрихи в целых 20 раз меньше генеративного (50 млн и 1 млрд пар оснований соответственно; для сравнения, у человека – 3 млрд, у бактерий – обычно до 10 млн). Такое радикальное сокращение достигается просто за счет выбрасывания из генеративного генома всего “лишнего”.

Инфузории размножаются делением, при этом делятся оба ядра. Время от времени инфузории конъюгируют, чтобы обменяться наследственным материалом (конъюгация – особая разновидность полового процесса). Во время конъюгации микронуклеус претерпевает мейоз, то есть такое деление, в ходе которого число хромосом сокращается вдвое. Соединившиеся инфузории обмениваются “половинками” своих микронуклеусов. Эти половинки затем сливаются, и каждая инфузория получает один целый микронуклеус, в котором половина хромосом – ее собственная, а половина получена от партнера. Затем инфузории разъединяются и продолжают жить как жили, с той небольшой разницей, что с точки зрения генетики каждая из них теперь превратилась в свою собственную дочь.

Во время конъюгации или сразу после нее макронуклеус вместе со своим геномом разрушается, а затем восстанавливается заново. За основу берется генеративный геном микронуклеуса, но он при этом подвергается радикальной перестройке. 95% генеративного генома просто удаляется. “На выброс” идут практически все транспозоны и некодирующие последовательности. Остаются чистые гены, почти без примесей. Но реорганизация генома не сводится к удалению мусора. Происходит также “распутывание” – сборка работающих генов из разрозненных и перепутанных обрывков. Как мы помним, многие гены в генеративном геноме разорваны на мелкие кусочки и перемешаны. В промежутках между этими кусочками могут находиться длинные некодирующие вставки. Это не обычные интроны, которые удаляются при сплайсинге (интроны у инфузорий тоже есть, но они входят в состав сохраняемых фрагментов). Это особые, характерные только для инфузорий “лишние” куски генома, удаляемые при формировании вегетативного генома макронуклеуса.

Например, в генеративном геноме ген может иметь такую структуру: 2X7X5X4X8X1X3X6 (цифрами обозначены “рабочие” фрагменты гена, буквой X – “ненужные” вставки различной длины). В вегетативном геноме этот ген будет выглядеть так: 12345678.

Откуда клетка знает, в каком порядке нужно соединять обрывки? До сих пор ответа на этот вопрос не было.

Исследователи из Принстонского университета установили, что для “распутывания” генетической информации инфузории используют образцы (матрицы), представляющие собой молекулы РНК, считанные с нанохромосом макронуклеуса (МАК-хромосом) перед тем, как макронуклеус был разрушен.

РНК-матрица, считанная с МАК-хромосомы перед разрушением макронуклеуса, служит “ключом” для распутывания генетической информации, содержащейся в МИК-хромосоме. Черным цветом обозначены концевые участки хромосом – теломеры. Чтобы это выяснить, пришлось провести много сложных экспериментов.

Для проверки гипотезы о роли РНК-матриц в сборке МАК-хромосом исследователи воспользовались методом РНК-интерференции. Инфузорий кормили генно-модифицированными бактериями, производящими двухцепочечные молекулы РНК, совпадающие по последовательности нуклеотидов с фрагментом одной из МАК-хромосом. Эукариотические клетки относятся к двухцепочечным РНК с опаской, принимают их за вирусов и начинают уничтожать все РНК с такой последовательностью нуклеотидов, в том числе и обычные, одноцепочечные. На этом основана методика “выключения” генов. Идея состояла в том, что, поев бактерий, инфузория сама уничтожит одну из РНК-матриц, необходимых ей для сборки МАК-хромосом. Так и вышло. В результате после конъюгации получились инфузории, у которых соответствующий участок одной из МАК-хромосом оказался собран неправильно или вообще не собран – просто оставлен в том виде, в каком он был в МИК-хромосоме. При этом все остальные МАК-хромосомы были собраны правильно.

Читайте также:  Энтеропатогенные кишечные палочки 0

Стало быть, РНК-матрицы действительно участвуют в программируемой перестройке генома. Но что они собой представляют – являются ли они копиями целых нанохромосом или отдельных их участков?

Исследователи стали выделять и анализировать РНК из инфузорий на разных стадиях жизненного цикла. Выяснилось, что через несколько часов после конъюгации (как раз тогда, когда старый макронуклеус разрушается, а новый начинает формироваться) в клетках появляются длинные транскрипты (молекулы РНК), соответствующие целым МАК-хромосомам вместе с концевыми участками – теломерами. Через 30-50 часов после конъюгации эти транскрипты исчезают.

Таким образом, перед тем как уничтожить макронуклеус вместе с вегетативным геномом, клетка снимает “резервную копию” с каждой МАК-хромосомы. Эта копия, представляющая собой молекулу РНК, в дальнейшем используется как образец для сборки новых маленьких и аккуратных МАК-хромосом из того безобразия, которое записано в МИК-хромосомах.

Следующий вопрос состоял в том, насколько точно РНК-матрицы регулируют процесс сборки МАК-хромосом и можно ли управлять этим процессом, внедряя в клетку искусственные РНК-матрицы? Исследователи синтезировали несколько молекул РНК, похожих на “настоящие” РНК-матрицы, но с измененным порядком фрагментов. Например, если для МИК-гена со структурой 2X7X5X4X8X1X3X6 правильная РНК-матрица имеет вид 12345678, то в искусственной матрице какую-нибудь пару фрагментов меняли местами (например, так: 13245678).

Впрыскивание таких матриц в инфузорий после конъюгации приводило к формированию МАК-хромосом двух типов: одни воспроизводили правильный порядок фрагментов (ведь правильные матрицы из клеток не удалялись), другие – тот, который присутствовал в искусственных матрицах. Напомним, что каждая МАК-хромосома в макронуклеусе присутствует в огромном количестве копий. Таким образом, РНК-матрицы осуществляют весьма точное управление процессом сборки МАК-хромосом, и при помощи искусственных матриц можно направлять этот процесс в желаемую сторону.

Следующий важный вопрос: регулируют ли РНК-матрицы сборку только тех генов, которые в генеративном геноме перемешаны (то есть имеют неправильный порядок фрагментов) или же этот механизм универсален и применяется ко всем генам без исключения?

Исследователи изготовили и ввели в инфузорий РНК-матрицы с неправильным порядком фрагментов для тех генов, которые в генеративном геноме не перемешаны и потому в “распутывании” не нуждаются (из них нужно только вырезать “лишние” куски). В итоге соответствующие гены в МАК-хромосомах оказались неправильно собраны. Значит, механизм универсален.

Из этого, кстати, следует интересный эволюционный вывод. Поскольку у инфузорий уже развилась универсальная система “распутывания” измельченных и перепутанных генов, дальнейшая фрагментация МИК-генов и перестановки их частей уже не будут отсеиваться отбором. Ведь есть распутывающий механизм, ему всё равно, он всё исправит. Видимо, потому-то МИК-геномы инфузорий и пришли постепенно в состояние хаоса.

Предполагают, что система изначально могла развиться просто для удаления лишних кусков генома, а “распутывающая” функция ее возникла при этом автоматически, сама собой, как некий довесок – сначала ненужный, но потом ставший необходимым.

Таким образом, информация о последовательности, в которой нужно сшивать обрывки генов генеративного генома, передается потомству инфузорий “неклассическим” способом – в виде молекул РНК. А ведь это не такая уж маленькая часть наследственной информации!

Могут ли РНК-матрицы передавать потомству также и информацию о последовательности отдельных нуклеотидов? До сих пор речь у нас шла только о последовательности фрагментов генов, то есть о кусках длиной в десятки и сотни нуклеотидов. Каждый ген, как известно, может существовать в виде нескольких аллелей, различающихся единичными нуклеотидными заменами или вставками. Поэтому соответствие РНК-матрицы и собираемых на ее основе МАК-хромосом далеко не всегда является абсолютным. Отдельные нуклеотиды могут различаться, и это не мешает правильной сборке.

В принципе, не исключено, что какие-то нуклеотидные замены могут передаваться из РНК-матрицы в собираемую МАК-хромосому. Конечно, инфузориям нет смысла переносить в МАК-хромосому все различия такого рода. Ведь тогда МАК-хромосомы после конъюгации оставались бы полностью идентичными материнским, и конъюгация потеряла бы всякий смысл. Но, как выяснилось, некоторые нуклеотидные замены все-таки переносятся в МАК-хромосомы из РНК-матриц. Это, однако, происходит не по всей длине собираемого гена, а только в непосредственной близости от мест “сшивки” фрагментов. Это очень важный факт, однозначно свидетельствующий о том, что в сшивке кусочков ДНК у инфузорий принимает участие только что открытый (у дрожжей) механизм починки ДНК на основе РНК-матриц.

Могут ли подобные системы редактирования генома, основанные на использовании РНК-матриц, работать и у других организмов, а не только у инфузорий? Почему бы и нет? Нужно искать. Череда открытий последних лет однозначно показывает, что живая клетка по-прежнему таит в себе множество неизвестных нам молекулярных механизмов, в том числе и таких, которые используются для целенаправленного изменения собственного генома.

Источник