Синтез клетками кишечной палочки инсулина

Синтез клетками кишечной палочки инсулина thumbnail

Инсулин – это белок, который является гормоном поджелудочной железы. Действие инсулина в основном направлено на обмен углеводов и проявляется снижением уровня сахара в крови (гипогликемический эффект). Это происходит за счет того, что инсулин облегчает переход глюкозы в клетки органов и тканей, где стимулирует ее активирование путем образования глюкозо-6-фосфата.

Последний, окисляясь, обеспечивает клетки энергией. Таким образом, инсулин способствует периферическому окислению глюкозы. Наряду с этим инсулин тормозит распад гликогена в клетках печени. При этом снижаются процессы распада жиров и превращение аминокислот в глюкозу и происходит активирование синтеза жиров и белков.

При недостатке инсулина развивается тяжелое заболевание – диабет; при этом разрушается нормальный обмен веществ. Диабетики должны получать инсулин ежедневно, если этого не происходит, то развивается тяжелое состояние – диабетическая кома, и организм погибает. Потребность в инсулине огромна. Долгое время источником инсулина служили железы коров и свиней. Учитывая, что поджелудочная железа коровы весит 200-250 г, для получения 100 г кристаллического инсулина нужно 800-1000 кг исходного сырья. Понятно, что животный инсулин не мог обеспечить всех больных. Например, в 1979 г. из 60-ти млн больных диабетом во всем мире, только 4 млн получали препарат инсулина.

Инсулин построен из двух полипептидных цепей А и В длиной 20 и 30 аминокислот, последовательность которых была установлена Сэнгером в 1955 г. Синтез обеих цепей и соединение их дисульфидными связями для получения инсулина были проведены тремя коллективами исследователей в Сша, Китае и ФРГ в 1963 и 1965 гг. Однако осуществить в промышленном масштабе столь дорогостоящий и сложный синтез, который включает 170 химических реакций, оказалось трудно. Тем не менее в 1980 г. в Дании (компанией «Ново индастри») был разработан способ превращения инсулина свиньи в инсулин человека замещением остатка аланина, который является 30-й аминокислотой в цепи В на остаток треонина.

Это удалось достигнуть путем ферментативного замещения с последующей хроматографической очисткой продукта; в результате был получен однокомпонентный инсулин человека 99 %-й чистоты. Исследования двух однокомпонентных инсулинов (человеческого и свиного) показали, что они не различались по активности и по времени действия. В 1982 г. инсулин производили главным образом две компании «Эли Лилли» (85 % сбыта инсулина в США и патент на его производство с 1923 г.) и «Ново индастри» (47,5 % сбыта гормона в Европе).

В организме животного две полипептидные цепи инсулина исходно являются частями одной белковой молекулы длиной 109 аминокислот – препроинсулина. При синтезе препроинсулина в клетках поджелудочной железы первые 23 аминокислоты служат сигналом для прохождения молекулы сквозь мембрану клетки; эти аминокислоты отщепляются, образуется проинсулин длиной 86 аминокислот. Молекула проинсулина сворачивается таким образом, что начальный и конечный ее сегменты сближаются, а центральная часть молекулы удаляется с помощью ферментов.

Так образуется инсулин. Роль центральной части сводится к правильному взаимному расположению двух цепей инсулина.

Гилберт с сотрудниками выделили и-РНК из поджелудочной железы крысы, синтезировали ДНК-копию (комплементарная ДНК), которая была встроена в плазмиду E. coli в среднюю часть гена пенициллиназы (этот фермент в норме секретируется из клеток), и получили рекомбинантную плазмиду. Как показало определение последовательности ДНК, рекомбинантная плазмида содержала информацию о структуре проинсулина, но не препроинсулина.

При трансляции и-РНК в клетках кишечной палочки синтезировался гибридный белок, содержащий последовательности пенициллиназы и проинсулина. Далее отщепляли пенициллиназу и удаляли средний сегмент проинсулина действием трипсина. Позднее было показано, что полученные таким образом молекулы влияют на сахарный обмен, как гормон, выделенный из поджелудочной железы крысы.

В 1979 г. в США были синтезированы гены, кодирующие А и Б цепи инсулина. Далее каждый синтетический ген встраивали в плазмиду E. coli в конце гена -галактозидазы. После этого синтезированные полипептиды отщепляли от фермента, проводили их очистку и цепи соединяли in vitro для получения полной молекулы инсулина.

В клетках E. coli был также осуществлен биосинтез проинсулина, а не только отдельных ее цепей. Для этого на и-РНК проинсулина синтезировали ее ДНК-копию с помощью обратной транскриптазы (ДНК-полимераза). Этот способ имеет серьезное преимущество, поскольку различные этапы экстракции и выделения гормона сведены к минимуму. С помощью этого метода был получен высокий выход гормона -200 г на 1000 л культуральной жидкости (это эквивалентно количеству инсулина, выделенного из 1600 кг поджелудочной железы животных).

Исследователям из компании «Генентек» потребовалось 10 месяцев, чтобы в сентябре 1978 г. получить инсулин человека в специально сконструированном штамме кишечной палочки. Этот инсулин прошел самые серьезные и длительные испытания, которые показали, что он не вызывает никаких побочных явлений, как инсулин животных (у одного из каждых 20-ти больных инсулин животных вызывает аллергию; часто наблюдаются также расстройства почек и зрения ).

Кроме того, при длительном применении препарат не вызывал отрицательных иммунологических реакций.

Технология производства инсулина в бактериальных клетках имеет огромные преимущества перед получением инсулина из поджелудочной железы животных: не зависит от перебоев или количества сырья, конечный продукт всегда имеет одинаковый состав и степень чистоты.

В октябре 1982 г. был налажен выпуск «хемулина» (препарата синтетического инсулина человека) фирмой «Эли Лилли», которая затратила 100 млн долларов, чтобы начать поставку продукта на рынок.

Читайте также:  При анализе мочи показывает кишечную палочку

Л.В. Тимощенко, М.В. Чубик

Опубликовал Константин Моканов

Источник

Кишечная палочка Esherichia coli, бактерия, известная
человечеству уже полтора века,
– обычнейший обитатель нашего кишечника. Она – излюбленный объект
исследований микробиологов, биохимиков и генетиков всего мира, и
не случайно именно Esherichia coli стала первым живым
генно-модифицированным организмом, появившимся на свет в 1973
году.  В ее геном был встроен ген человека, кодирующий
синтез инсулина.

Синтез клетками кишечной палочки инсулина

В настоящее время генетически модифицированные микроорганизмы
используются для производства фармацевтических препаратов,
вакцин, продуктов тонкого органического синтеза, пищевых добавок
и многого другого. Новые штаммы кишечной палочки уже не просто
производят инсулин: они стимулируют восстановление собственных
способностей организма пациента вырабатывать этот гормон. При
диабете первого типа бета-клетки поджелудочной железы утрачивают
способность синтезировать инсулин. Ученые Корнельского
университета (Итака, штат Нью-Йорк), работающие под руководством
Джона Марча (John March),  решили попытаться восстановить
этот механизм с помощью сигнальной системы, используемой
выстилающими кишечник эпителиальными клетками и населяющими его
полезными бактериями. Созданный в лаборатории Марча штамм
непатогенной кишечной палочки синтезирует белок GLP-1 –
глюкагоноподобный пептид. В организме здорового человека этот
белок синтезируется клетками кишечника и, среди прочих эффектов,
запускает продукцию инсулина в поджелудочной железе. Авторы
продемонстрировали, что в лабораторных условиях в присутствии
глюкозы секретирующие GLP-1 бактерии запускают синтез инсулина в
культуре клеток кишечника человека. Механизмы, лежащие в основе
этого феномена, пока не ясны. Спектр применения – колоссальный, к
примеру, обычный йогурт, обогащенный такими бактериями, сможет
заменить больным диабетом инъекции инсулина! Кроме бактерий для
лечения диабета, группа Марча работает над созданием целого ряда
целебных штаммов микроорганизмов, в том числе предназначенных для
борьбы с кариесом, синтеза витаминов, лечения непереносимости
лактозы и профилактики холеры.

Синтез клетками кишечной палочки инсулина

Синтез клетками кишечной палочки инсулина

Стало известно о результатах исследования группы генетиков из
Массачусетского технологического института под руководством
профессора Рона Вайса (Ron Weiss), специалиста в области
синтетической биологии. В этом исследовании ученые пытаются
сделать кишечную палочку бактерией-охотником за одной из самых
опасных внутрибольничных инфекций – синегнойной палочкой
(Pseudomonas aeruginosa), олицетворяющей одну из главных проблем
современной медицины — резистентности патогенных микробов к
антибиотикам. Если пациенту в больнице внезапно становится плохо,
и антибиотики не помогают, то обычно главной причиной этого
оказывается именно “синегнойка” — агрессивный обитатель
хирургических отделений, виновник тысяч жертв. Ученые в
буквальном смысле «натравили» кишечную палочку на «синегнойку» –
модифицировали бактерию так, что она научилась «выслеживать» и
убивать клетки Pseudomonas, обитающие в ранах и абсцессах.

Синтез клетками кишечной палочки инсулина

Esherichia coli находит клетки синегнойной палочки, что
называется, «по запаху». Дело в том, что клетки опасного патогена
общаются друг с другом внутри своей колонии с помощью различных
сигнальных веществ. Модифицированная E.Coli реагирует на это
вещество, связываясь с ним особым протеином, и, обнаружив
псевдомонаду, убивает ее с помощью яда, получившего название
бактериоцин. Попадая внутрь клетки синегнойной палочки, подвижной
и устойчивой к большинству антибиотиков, бактериоцин разрушает ее
ДНК. Рон Вайс и его коллеги показали, что генетически
модифицированная кишечная палочка в лабораторной жидкой культуре
убивает “синегнойку”, не причиняя вреда себе, а также другим
неопасным бактериям. Этот метод испытан пока лишь в лаборатории,
но ученые считают, что возможно сделать лечебный штамм кишечной
палочки в 20 раз сильнее опытного экземпляра. И тогда испытать на
млекопитающих, а также подумать о возможных лекарственных формах
пробиотиков.

Синтез клетками кишечной палочки инсулина

Генно-модифицированные штаммы кишечной палочки ученые намерены
использовать и для решения одной из проблем века – ожирения. Как
показывают исследования, добавление в еду подопытным мышам
особого штамма E.Coli , в геном которой введен ген растения
резуховидки, помогает избавить от лишнего веса подопытных мышей.
Бактерии ориентированы на синтез особого вещества под названием
NAPE, которое организм млекопитающих превращает в гормон,
вырабатываемый в процессе переваривания пищи. Этот гормон
поступает через кровь в мозг и, сигнализируя о насыщении,
уменьшает аппетит. Получается, что бактерия заставляет мышей
думать, что они едят больше, чем на самом деле. В исследовании,
опубликованном в журнале The Journal of Clinical Investigation,
грызунов, которым добавляли бактерии в питьевую воду, и грызунов
из контрольной группы кормили высококалорийной пищей. У мышей,
которые употребляли бактерии, снизился аппетит, они перестали
набирать вес и начали показывать меньшую инсулиновую
устойчивость. Эффект сохранялся около четырех недель. Ученые
считают, что эти бактерии можно использовать в пробиотиках для
употребления людьми. Если препарат окажется действенным и
безопасным, то он даст большую фору существующим лекарствам
против ожирения.

Синтез клетками кишечной палочки инсулина

Пробиотики, изготовленные с добавлением модифицированной кишечной
палочки, как считают ученые – это одно из лекарств будущего, ведь
для этой бактерии кишечник человека – естественное местом ее
обитания. Однако, несмотря на первые успехи, авторы отмечают, что
им еще предстоит ответить на несколько непростых вопросов.
Например, необходимо выяснить, насколько опасны подобные
вмешательства в естественную микрофлору кишечника, индивидуальную
для каждого человека.

Источник

Инсулин – это белок, который является гормоном поджелудочной железы. Действие инсулина в основном направлено на обмен углеводов и проявляется снижением уровня сахара в крови (гипогликемический эффект). Это происходит за счет того, что инсулин облегчает переход глюкозы в клетки органов и тканей, где стимулирует ее активирование путем образования глюкозо-6-фосфата.

Читайте также:  Как передается кишечная палочка грудничкам

Последний, окисляясь, обеспечивает клетки энергией. Таким образом, инсулин способствует периферическому окислению глюкозы. Наряду с этим инсулин тормозит распад гликогена в клетках печени. При этом снижаются процессы распада жиров и превращение аминокислот в глюкозу и происходит активирование синтеза жиров и белков.

При недостатке инсулина развивается тяжелое заболевание – диабет; при этом разрушается нормальный обмен веществ. Диабетики должны получать инсулин ежедневно, если этого не происходит, то развивается тяжелое состояние – диабетическая кома, и организм погибает. Потребность в инсулине огромна. Долгое время источником инсулина служили железы коров и свиней. Учитывая, что поджелудочная железа коровы весит 200-250 г, для получения 100 г кристаллического инсулина нужно 800-1000 кг исходного сырья. Понятно, что животный инсулин не мог обеспечить всех больных. Например, в 1979 г. из 60-ти млн больных диабетом во всем мире, только 4 млн получали препарат инсулина.

Инсулин построен из двух полипептидных цепей А и В длиной 20 и 30 аминокислот, последовательность которых была установлена Сэнгером в 1955 г. Синтез обеих цепей и соединение их дисульфидными связями для получения инсулина были проведены тремя коллективами исследователей в Сша, Китае и ФРГ в 1963 и 1965 гг. Однако осуществить в промышленном масштабе столь дорогостоящий и сложный синтез, который включает 170 химических реакций, оказалось трудно. Тем не менее в 1980 г. в Дании (компанией «Ново индастри») был разработан способ превращения инсулина свиньи в инсулин человека замещением остатка аланина, который является 30-й аминокислотой в цепи В на остаток треонина.

Это удалось достигнуть путем ферментативного замещения с последующей хроматографической очисткой продукта; в результате был получен однокомпонентный инсулин человека 99 %-й чистоты. Исследования двух однокомпонентных инсулинов (человеческого и свиного) показали, что они не различались по активности и по времени действия. В 1982 г. инсулин производили главным образом две компании «Эли Лилли» (85 % сбыта инсулина в США и патент на его производство с 1923 г.) и «Ново индастри» (47,5 % сбыта гормона в Европе).

В организме животного две полипептидные цепи инсулина исходно являются частями одной белковой молекулы длиной 109 аминокислот – препроинсулина. При синтезе препроинсулина в клетках поджелудочной железы первые 23 аминокислоты служат сигналом для прохождения молекулы сквозь мембрану клетки; эти аминокислоты отщепляются, образуется проинсулин длиной 86 аминокислот. Молекула проинсулина сворачивается таким образом, что начальный и конечный ее сегменты сближаются, а центральная часть молекулы удаляется с помощью ферментов.

Так образуется инсулин. Роль центральной части сводится к правильному взаимному расположению двух цепей инсулина.

Гилберт с сотрудниками выделили и-РНК из поджелудочной железы крысы, синтезировали ДНК-копию (комплементарная ДНК), которая была встроена в плазмиду E. coli в среднюю часть гена пенициллиназы (этот фермент в норме секретируется из клеток), и получили рекомбинантную плазмиду. Как показало определение последовательности ДНК, рекомбинантная плазмида содержала информацию о структуре проинсулина, но не препроинсулина.

При трансляции и-РНК в клетках кишечной палочки синтезировался гибридный белок, содержащий последовательности пенициллиназы и проинсулина. Далее отщепляли пенициллиназу и удаляли средний сегмент проинсулина действием трипсина. Позднее было показано, что полученные таким образом молекулы влияют на сахарный обмен, как гормон, выделенный из поджелудочной железы крысы.

В 1979 г. в США были синтезированы гены, кодирующие А и Б цепи инсулина. Далее каждый синтетический ген встраивали в плазмиду E. coli в конце гена -галактозидазы. После этого синтезированные полипептиды отщепляли от фермента, проводили их очистку и цепи соединяли in vitro для получения полной молекулы инсулина.

В клетках E. coli был также осуществлен биосинтез проинсулина, а не только отдельных ее цепей. Для этого на и-РНК проинсулина синтезировали ее ДНК-копию с помощью обратной транскриптазы (ДНК-полимераза). Этот способ имеет серьезное преимущество, поскольку различные этапы экстракции и выделения гормона сведены к минимуму. С помощью этого метода был получен высокий выход гормона -200 г на 1000 л культуральной жидкости (это эквивалентно количеству инсулина, выделенного из 1600 кг поджелудочной железы животных).

Исследователям из компании «Генентек» потребовалось 10 месяцев, чтобы в сентябре 1978 г. получить инсулин человека в специально сконструированном штамме кишечной палочки. Этот инсулин прошел самые серьезные и длительные испытания, которые показали, что он не вызывает никаких побочных явлений, как инсулин животных (у одного из каждых 20-ти больных инсулин животных вызывает аллергию; часто наблюдаются также расстройства почек и зрения ).

Кроме того, при длительном применении препарат не вызывал отрицательных иммунологических реакций.

Технология производства инсулина в бактериальных клетках имеет огромные преимущества перед получением инсулина из поджелудочной железы животных: не зависит от перебоев или количества сырья, конечный продукт всегда имеет одинаковый состав и степень чистоты.

В октябре 1982 г. был налажен выпуск «хемулина» (препарата синтетического инсулина человека) фирмой «Эли Лилли», которая затратила 100 млн долларов, чтобы начать поставку продукта на рынок.

Л.В. Тимощенко, М.В. Чубик

Опубликовал Константин Моканов

Источник

Инсулин – это белок, который является гормоном поджелудочной железы. Действие инсулина в основном направлено на обмен углеводов и проявляется снижением уровня сахара в крови (гипогликемический эффект). Это происходит за счет того, что инсулин облегчает переход глюкозы в клетки органов и тканей, где стимулирует ее активирование путем образования глюкозо-6-фосфата.

Читайте также:  Может ли передаться кишечная палочка

Последний, окисляясь, обеспечивает клетки энергией. Таким образом, инсулин способствует периферическому окислению глюкозы. Наряду с этим инсулин тормозит распад гликогена в клетках печени. При этом снижаются процессы распада жиров и превращение аминокислот в глюкозу и происходит активирование синтеза жиров и белков.

При недостатке инсулина развивается тяжелое заболевание – диабет; при этом разрушается нормальный обмен веществ. Диабетики должны получать инсулин ежедневно, если этого не происходит, то развивается тяжелое состояние – диабетическая кома, и организм погибает. Потребность в инсулине огромна. Долгое время источником инсулина служили железы коров и свиней. Учитывая, что поджелудочная железа коровы весит 200-250 г, для получения 100 г кристаллического инсулина нужно 800-1000 кг исходного сырья. Понятно, что животный инсулин не мог обеспечить всех больных. Например, в 1979 г. из 60-ти млн больных диабетом во всем мире, только 4 млн получали препарат инсулина.

Инсулин построен из двух полипептидных цепей А и В длиной 20 и 30 аминокислот, последовательность которых была установлена Сэнгером в 1955 г. Синтез обеих цепей и соединение их дисульфидными связями для получения инсулина были проведены тремя коллективами исследователей в Сша, Китае и ФРГ в 1963 и 1965 гг. Однако осуществить в промышленном масштабе столь дорогостоящий и сложный синтез, который включает 170 химических реакций, оказалось трудно. Тем не менее в 1980 г. в Дании (компанией «Ново индастри») был разработан способ превращения инсулина свиньи в инсулин человека замещением остатка аланина, который является 30-й аминокислотой в цепи В на остаток треонина.

Это удалось достигнуть путем ферментативного замещения с последующей хроматографической очисткой продукта; в результате был получен однокомпонентный инсулин человека 99 %-й чистоты. Исследования двух однокомпонентных инсулинов (человеческого и свиного) показали, что они не различались по активности и по времени действия. В 1982 г. инсулин производили главным образом две компании «Эли Лилли» (85 % сбыта инсулина в США и патент на его производство с 1923 г.) и «Ново индастри» (47,5 % сбыта гормона в Европе).

В организме животного две полипептидные цепи инсулина исходно являются частями одной белковой молекулы длиной 109 аминокислот – препроинсулина. При синтезе препроинсулина в клетках поджелудочной железы первые 23 аминокислоты служат сигналом для прохождения молекулы сквозь мембрану клетки; эти аминокислоты отщепляются, образуется проинсулин длиной 86 аминокислот. Молекула проинсулина сворачивается таким образом, что начальный и конечный ее сегменты сближаются, а центральная часть молекулы удаляется с помощью ферментов.

Так образуется инсулин. Роль центральной части сводится к правильному взаимному расположению двух цепей инсулина.

Гилберт с сотрудниками выделили и-РНК из поджелудочной железы крысы, синтезировали ДНК-копию (комплементарная ДНК), которая была встроена в плазмиду E. coli в среднюю часть гена пенициллиназы (этот фермент в норме секретируется из клеток), и получили рекомбинантную плазмиду. Как показало определение последовательности ДНК, рекомбинантная плазмида содержала информацию о структуре проинсулина, но не препроинсулина.

При трансляции и-РНК в клетках кишечной палочки синтезировался гибридный белок, содержащий последовательности пенициллиназы и проинсулина. Далее отщепляли пенициллиназу и удаляли средний сегмент проинсулина действием трипсина. Позднее было показано, что полученные таким образом молекулы влияют на сахарный обмен, как гормон, выделенный из поджелудочной железы крысы.

В 1979 г. в США были синтезированы гены, кодирующие А и Б цепи инсулина. Далее каждый синтетический ген встраивали в плазмиду E. coli в конце гена -галактозидазы. После этого синтезированные полипептиды отщепляли от фермента, проводили их очистку и цепи соединяли in vitro для получения полной молекулы инсулина.

В клетках E. coli был также осуществлен биосинтез проинсулина, а не только отдельных ее цепей. Для этого на и-РНК проинсулина синтезировали ее ДНК-копию с помощью обратной транскриптазы (ДНК-полимераза). Этот способ имеет серьезное преимущество, поскольку различные этапы экстракции и выделения гормона сведены к минимуму. С помощью этого метода был получен высокий выход гормона -200 г на 1000 л культуральной жидкости (это эквивалентно количеству инсулина, выделенного из 1600 кг поджелудочной железы животных).

Исследователям из компании «Генентек» потребовалось 10 месяцев, чтобы в сентябре 1978 г. получить инсулин человека в специально сконструированном штамме кишечной палочки. Этот инсулин прошел самые серьезные и длительные испытания, которые показали, что он не вызывает никаких побочных явлений, как инсулин животных (у одного из каждых 20-ти больных инсулин животных вызывает аллергию; часто наблюдаются также расстройства почек и зрения ).

Кроме того, при длительном применении препарат не вызывал отрицательных иммунологических реакций.

Технология производства инсулина в бактериальных клетках имеет огромные преимущества перед получением инсулина из поджелудочной железы животных: не зависит от перебоев или количества сырья, конечный продукт всегда имеет одинаковый состав и степень чистоты.

В октябре 1982 г. был налажен выпуск «хемулина» (препарата синтетического инсулина человека) фирмой «Эли Лилли», которая затратила 100 млн долларов, чтобы начать поставку продукта на рынок.

Л.В. Тимощенко, М.В. Чубик

Опубликовал Константин Моканов

Источник