В митохондриях кишечной палочки запасаются молекулы атф

В митохондриях кишечной палочки запасаются молекулы атф thumbnail

нескучная онлайн-школа для тех, кто готовится к экзаменам и хочет во всем разобраться

знаем, как сделать так, чтобы вы по-настоящему поняли предмет и сдали ЕГЭ на 80+ баллов и выше.

Основа

у нас как раз открыт набор на основу 2.0

в 2020

  • 100баллов

    получили 251 выпускников Вебиума

  • 90+баллов

    заработали 1825 наших учеников

  • 80+баллов

    результат, который получает на экзамене каждый третий студент Вебиума

учим любить предмет и не бояться ЕГЭ

    Фото учителя

    Борюсь с несовершенством образовании и рассказываю сложные вещи простым языком!

    • 8 лет преподаю биологию.
      Подготовил 35 стобалльников. Окончил биологический факультет ИГУ. Окончил школу с золотой медалью. Участник заключительного этапа Всероса по биологии.

    Фото учителя

    Окончила лицей с золотой медалью.

    • Поступила на бюджет в НИУ ВШЭ.
      Учусь на англоязычной программе.
      Сдала ЕГЭ по английскому на 95 баллов, а по русскому – на 100.

    Фото учителя

    Считаю географию наукой о жизни и легко объясняю сложные процессы на простых примерах.

    • Преподаю географию 5 лет.
      Средний балл моих студентов 82,7 баллов.
      Подготовил 19 стобалльников в 2020 году.
      Учусь на экономической географии в КФУ.

    Фото учителя

    Помогаю не просто сдать ЕГЭ по литературе, а действительно полюбить этот предмет.

    • Каждый 10-ый студент моего курса получил 100 баллов в 2020 году.
      Окончила филологический бакалавриат с отличием, сейчас учусь в филологической магистратуре СПбГУ на бюджете.
      Уже 5 лет помогаю юным литераторам продираться сквозь литературные дебри.

    Фото учителя

    Информатика – это будущее в твоих руках.

    • 7 лет развиваю мозг будущих IT-шников.
      Учу информатике в Майнкрафте и Ведьмаке.
      Сдал вступительные в магистратуру на 100/100.
      В 2020 выпустил 400+ учеников, трое из них сдали на 100.
      Учился в Испании в Политехническом Университете Мадрида.
      Читал курсы для Газпрома, РЖД, СберБанка и тд.

    Фото учителя

    Физика – это про жизнь, а не задачи!

    • Сдала ЕГЭ по физике на 94 балла, готовясь всего лишь год.
      Со мной ребята поступили в ИТМО, СПБПУ, ЛЭТИ, МГТУ им.Баумана.

    Фото учителя

    Окончила гимназию с золотой медалью.

    • 3 года преподаю историю в онлайн-школе.
      Учусь на истфаке СПбГУ.
      Сумма баллов за ЕГЭ – 288 (96 – история).

    Фото учителя

    Я — Эйджей, а математика — мой профиль.

    • Математика по любви, ЕГЭ по расчёту. 5 лет преподаю математику подготовлю тебя к экзамену с любого уровня. Окончил школу и музыкальную школу с золотой медалью. Окончил инженерное высшее с красным дипломом и экономическое высшее тоже с красным.

    Фото учителя

    Химия – это любовь, и я влюбляю в эту науку всех вокруг!

    • Почти 9 лет преподаю химию, за последние 3 года подготовила 59 стобалльников и написала три пособия для подготовки к ЕГЭ. Окончила химический факульет МГУ имени М.В. Ломоносова.

    Фото учителя

    Объясняю просто и понятно на классных примерах, которые ты точно запомнишь.

    • 5 лет преподаю русский язык.
      Подготовила 41 стобалльника в 2020 году.
      Средний балл моих студентов 89.
      Каждый пятый ученик набрал 90+.
      Окончила факультет филологии и журналистики ИГУ с красным дипломом.

    Фото учителя

    Каждый второй ученик у меня – высокобалльник.

    • Третий год преподаю общество.
      Сдала обществознание на 96 баллов. Поступила на бюджет НИУ ВШЭ.
      Со мной занимались более 2500 человек.

    Фото учителя

    Моя главная задача – сделать так, чтобы математика стала для тебя подругой, а экзамен ты сдал/а легко! Ты со мной?

    • 5 лет преподаю математику от алгебры до матанализа.
      За 2020 год подготовил 500 ребят к ОГЭ и ЕГЭ База.
      Окончил первую в России Физико-математическую школу при университете.
      Учусь на 4 курсе экономического факультета СПбГУ.

    Изображение лиц

    Наши преподаватели выпустили несколько потоков студентов и знают, как побороть страх и сомнения перед экзаменом. Вы окажетесь в компании друзей и профессионалов, которые помогут вам показать свой лучший результат.

    • просто общаться

      Объясняют мегадоступно и не вызывают к доске. В курсе, где вайб, где зашквар, никого не хейтят и без проблем отвечают в мессенджере.

    • легко учиться

      Опыт преподавателей и образовательно-игровая платформа делают учёбу интересной и веселой. Ведь когда тебе действительно не всё равно, то становится легко и весело

    • можно оценить

      У каждого наставника есть свои секреты и личное кунг-фу, которые можно затестить на бесплатных вебинарах.

    что такое основа 2.0?

    Это онлайн-курс для 11-классников по подготовке к ЕГЭ от Вебиума

    С ноября по май изучаем и повторяем всю теорию по выбранному предмету и отрабатываем ее на практике. Спокойно и размеренно, без паники и со временем на личную жизнь.

    а ещё…

    • Картинка

      12 онлайн-занятий в месяц

      – весь учебный год. Это три 1,5-часовых занятия в неделю во второй половине дня.

    • Картинка

      удобный режим

      Можно смотреть как в трансляции, чтобы задавать вопросы онлайн, так и в записи — в удобное время

    • Картинка

      личный кабинет

      Расписание, домашки, прогресс — весь процесс обучения как на ладони

    • Картинка

      наставники

      Наши наставники поддержат тебя в любое время дня (и даже ночи), проверка домашних заданий.

    • Картинка

      можно совмещать курсы

      Расписание разных предметов не пересекается, чтобы люди со сверхспособностями могли успеть везде

    • Картинка

      ооочень много практики

      Решаем все задания, до которых можем дотянуться

    присоединяйтесь к учебе

    Читайте также:  Кишечная палочка в ейске 2016

    основа 2.0

    готовимся без стресса за 7 месяцев

    почему выбирают основу 2.0

    • раз

      достаточно времени на подготовку — за 7 месяцев можно все выучить, повторить и снова выучить

    • два

      не нужно торопиться: расписание составлено так, что готовиться можно размеренно и качественно

    • три

      это удобно — нет привязки к месту, времени, готовиться можно где угодно и когда удобно.

    • четыре

      это доступно: занятие на «Основе 2.0» по стоимости сравнимо с обедом в «Маке»

    • пять

      это дешевле репетиторов, при этом подготовка индивидуальная, и в любое время можно задавать вопросы (и ездить никуда не нужно!)

    • шесть

      можно платить в рассрочку — каждый месяц. А можно сразу весь курс — как удобно.

    • семь

      отличные результаты — выпускники «Основы 2.0» получают 90+ на ЕГЭ

    как проходит обучение

    • всё в личном кабинете

      На нашей образовательной платформе у каждого есть личный кабинет — тут смотрят вебинары, проходят тесты, сдают домашку, следят за своим прогрессом (при желании, можно показать родителям) и получают обратную связь

    • онлайн-трансляции

      Занятия проходят на нашей платформе: преподаватели ведут онлайн‑трансляции. Урок длится около часа, а их количество зависит от курса. Во время вебинара слушатели работают со скриптом занятий — пособием, которое удобно заполнять (оно помогает структурировать и запоминать материал), задают вопросы онлайн. Позже вебинар доступен в записи — всегда можно освежить материал в памяти.

    • команда подготовки

      Основная форма подготовки к экзамену — команда подготовки: 25–30 учеников, которые под руководством преподавателя совместно проходят теорию и практику: слушают вебинары, участвуют в брейнштормах, викторинах, тестах.

    • поддержка и мотивация

      Кроме преподавателей, в учебный процесс включены наставники — кураторы команд подготовки и ассистенты преподавателей. Они проверяют домашнюю работу, помогают разобраться с ошибками, следят за сроками, мотивируют и поддерживают.

    • много много много практики

      Домашние задания после каждого вебинара, а в начале и конце месяца — пробные тесты ЕГЭ (это вообще не страшно). За время продолжительных курсов ученики в командах подготовки решают, пожалуй, все пробные тесты, до которых только могут дотянуться, но преподаватели не сдаются и разрабатывают свои задания. При этом, нагрузка рассчитана так, чтобы этот объем никого не сломал — есть время на жизнь.

    нас выбирают, чтобы достигать большего

    наши ученики поступают в топовые вузы страны

    вот что говорят

    • Ирина Баранова

      выпуск 2020

    • Кристина Воробьева

      выпуск 2020

    • Марк Александров

      выпуск 2020

    • Наталья Кривочапова

      выпуск 2020

    с чего начать подготовку к ЕГЭ-2021

    чек лист для и

    • Выбор направления
    • Выбор предметов
    • Подготовка к экзаменам
    • Выбор формата подготовки
    • Проба пера
    • Грамотное планирование!
    • Выбираем направление в образовании
    • Выбираем предметы для ЕГЭ
    • Знакомимся с форматом и содержанием экзамена
    • Выбираем формат подготовки
    • Оцениваем уровень подготовки
    • Составляем план

    Источник

    Снимок химерных клеток кишечной палочки и дрожжей

    Общепринятая на данный момент теория симбиогенеза предполагает, что митохондрии в эукариотических клетках произошли от симбиотических бактерий. Однако поиски предковой бактерии и реконструкция событий симбиогенеза еще далеки от завершения. Авторы новой статьи в журнале PNAS подошли к проблеме с другого конца: они смоделировали симбиогенез на примере хорошо изученной бактерии (Escherichia coli) и хорошо изученной эукариотической клетки (Saccharomyces cerevisiae). Теперь у нас есть отработанная методика получения химерных клеток, с помощью которой можно проверять, какие именно свойства предковой бактерии были необходимы для симбиогенеза.

    Теория симбиогенеза была предложена в 1967 году. Согласно ей, археи и протеобактерии вступили в эндосимбиоз (первые тем или иным способом «поглотили» вторых), что привело к возникновению эукариот (см.: Теория симбиогенеза 50 лет спустя: параллельной эукариотизации, скорее всего, не было, «Элементы», 22.11.2017). За 50 лет удалось уточнить разные детали: судя по всему, эндосимбиоз с предками митохондрий произошел только один раз, а не в нескольких параллельных ветвях, и это стало конечным этапом в становлении эукариот (см.: Генеалогия белков свидетельствует о позднем приобретении митохондрий предками эукариот, «Элементы», 08.02.2016). Однако вопросов всё еще остается немало: например, что это была за предковая бактерия? Одна из распространенных точек зрения заключается в том, что изначально бактерии паразитировали на клетках архей, а потом паразитизм перешел в симбиоз. В таком случае, ближайшие родственники такой бактерии, известные нам, — это альфапротеобактерии риккетсии, внутриклеточные паразиты многих животных и человека (вызывают, например, эпидемический сыпной тиф и пятнистую лихорадку Скалистых гор).

    Можно продолжать поиск родственников «с конца», то есть сравнивать геномы современных митохондрий с геномами различных бактерий и искать пересечения, а можно зайти «с начала» и попробовать воспроизвести эту предковую бактерию самим. Для этого нужно определить минимальный набор свойств, которыми она должна обладать для успешного внедрения внутрь археи. Заодно такой метод мог бы пролить свет на последовательность событий симбиогенеза. Но коль скоро мы не умеем создавать бактерии с нуля, можно модифицировать самую изученную бактерию на свете — кишечную палочку (Escherichia coli).

    Общий принцип, которым руководствовались авторы эксперимента, можно сформулировать так: чтобы заставить две клетки вступить в симбиоз, нужно отобрать у них что-то жизненно важное, тогда их существование по отдельности станет невозможно (рис. 2).

    Рис. 2. Дизайн эксперимента

    Всю работу можно условно разделить на пять шагов.

    Шаг 1 — лишить кишечную палочку самодостаточности. Чтобы эндосимбиоз оказался выгодным решением для бактерии, она должна стать ауксотрофом — быть неспособной производить какое-нибудь жизненно необходимое вещество. Для многих бактерий таким веществом является тиамин (витамин B1) — кофермент в реакциях углеводного обмена. Поэтому в геноме E. coli ген биосинтеза тиамина был заменен на кассету (см. Gene cassette) с GFP (зеленым флуоресцентным белком) и геном устойчивости к антибиотику канамицину. Теперь клетки не могут выживать без внешнего источника тиамина (который они сквозь мембрану закачивают внутрь), их можно отобрать под действием антибиотика и отследить во флуоресцентный микроскоп.

    Шаг 2 — сделать кишечную палочку полезной. Авторы гипотезы происхождения митохондрии из внутриклеточных паразитов полагают, что одним из ключевых белков был АТФ/АДФ-антипортер (см. Antiporter). Это белок-переносчик, который обменивает АТФ на АДФ, меняя их местами по разные стороны мембраны. У паразитической бактерии он должен работать на благо бактерии: захватывать АТФ снаружи (то есть отбирать у клетки-хозяина) и менять на отработанные АДФ бактерии. Однако этот механизм можно заставить работать и в обратную сторону, если концентрации веществ поменяются местами. При этом бактерия начнет забирать АДФ из цитоплазмы хозяина и отдавать АТФ. Так или иначе, АДФ/АТФ-антипортеры есть как у современных митохондрий, так и у внутриклеточных паразитов. У свободно живущей кишечной палочки такого белка нет, поэтому пришлось снабдить клетки E. coli плазмидой с соответствующим геном.

    Шаг 3 — лишить дрожжи самодостаточности. Чтобы заставить дрожжи вступить в симбиоз, их нужно лишить энергии, то есть АТФ. Тогда единственным выходом будет получить его от кишечной палочки. Но у дрожжей, как у почти всех эукариот, есть свои митохондрии. Поэтому авторы эксперимента взяли мутантный штамм дрожжей, лишенный одного из ключевых митохондриальных генов. Такие клетки содержат митохондрии, но не получают от них энергии. Они не могут расти в среде, где из питательных веществ есть только глицерин. Однако оказалось, что и в симбиоз с E. coli они тоже не вступают.

    Шаг 4 — добавить «белки слияния». Эукариотическая клетка — это множество вложенных друг в друга мембранных пузырьков. Чтобы органеллы хаотично не сливались друг с другом, мембраны покрыты белками группы SNARЕ, которые могут стимулировать или блокировать слияние. Многие патогенные бактерии тоже несут SNARE-подобные белки. Клетка-хозяин воспринимает их как собственные органеллы и не переваривает (то есть с ними не сливаются лизосомы). Правда, мы пока не уверены в том, что к моменту эндосимбиоза эукариоты уже обладали системой этих белков. Но коль скоро мы работаем с дрожжами, приходится на нее ориентироваться. Авторы эксперимента ввели кишечной палочке гены трех разных SNARE-подобных белков, позаимствованных у хламидий. И только после этого они получили устойчивые колонии дрожжей с симбиотическими E. coli (рис. 3). Колонии росли на среде, богатой глицерином, лишенной тиамина и с добавлением антибиотика канамицина, — то есть удовлетворяли всем условиям эксперимента. В том же составе химерные клетки размножались в течение последующих трех дней культивирования, что соответствует примерно 40 делениям.

    Рис. 3. Ультраструктура химерных клеток

    Шаг 5 — убрать лишнее. В ходе эволюции митохондрия утратила большую часть ДНК (у млекопитающих, например, в ее геноме осталось лишь 37 генов). Это значит, что она становилась всё более зависимой от своей клетки-хозяина. Авторы обсуждаемой статьи попробовали воспроизвести и этот этап тоже. Для этого они удалили у клеток кишечной палочки ген биосинтеза НАД+ — еще одного важного кофермента. Клетки, лишенные НАД+, так же как и их предшественники, лишенные тиамина, успешно образовывали химеры с дрожжами. И даже двойные мутанты, неспособные производить ни один из этих коферментов, также вступали в эндосимбиоз (рис. 4).

    Рис. 4. Колонии химерных клеток, образованные разными штаммами кишечной палочки

    Перед нами — отработанная методика, с помощью которой можно моделировать ранние события эндосимбиоза. Клетки кишечной палочки, дефицитные по разным веществам, равно хорошо образуют химеры, которые воспроизводятся из поколения в поколение. Следующий шаг — поиск предельной редукции генома E. coli, возможной в данной ситуации. Авторы статьи отмечают, что удаление всего двух путей биосинтеза уже дало экономию в 7,7 тысяч пар нуклеотидов (для сравнения, весь митохондриальный геном человека составляет примерно 15 тысяч пар). Поэтому нам еще предстоит найти ту грань, на которой экономия размера генома столкнется с возможностью выживания клетки-симбионта.

    Кроме того, как ехидно указывают авторы в конце текста, при таком раскладе не очень понятно, кто в этой истории настоящий паразит. Если бактерия, попавшая внутрь археи, лишь постепенно утрачивала свои метаболические пути, то возможно настоящим паразитом здесь стоит считать архею, которая потребляла энергию, производимую бактерией.

    Источник: A. P. Mehta, L. Supekova, J.-H. Chen, K. Pestonjamasp, P. Webster, Y. Ko, S. C. Henderson, G. McDermott, F. Supeke, P. G. Schultz. Engineering yeast endosymbionts as a step toward the evolution of mitochondria // PNAS. Published ahead of print October 29, 2018. DOI: 10.1073/pnas.1813143115.

    Полина Лосева

    Источник

    В митохондриях кишечной палочки запасаются молекулы атф

    Американские биологи заставили кишечную палочку поселиться внутри клеток дрожжей и выполнять функции сломанных митохондрий. Результаты эксперимента, который имитирует ранние этапы эволюции митохондрий, описаны в статье, опубликованной в журнале Proceedings of the National Academy of Sciences.

    Митохондрия — важнейшая органелла клеток человека, а заодно и практически всех других эукариотических организмов, главная энергетическая станция клетки. На ней углеводы окисляются под воздействием кислорода, а выделившаяся при этом энергия запасается впрок. Из цитоплазмы туда поступают «разряженные» клеточные «батарейки» — молекулы АДФ. Там они «заряжаются», превращаясь в молекулы АТФ, покидают митохондрию и используются дальше на нужды клетки.

    Еще в начале XX века ученые заметили, что митохондрии (и хлоропласты растений) удивительно похожи на бактерий, а в 1970-х годах Линн Маргулис и ее последователи свели сведения об этом в теорию эндосимбиоза. Согласно ей, все митохондрии были раньше свободноживущими бактериями, способными очень эффективно перерабатывать углеводы при помощи кислорода, а потом попали внутрь предковой эукариотической клетки. По каким-то причинам они не были переварены, как это обычно происходит, а остались целы. Клетка-хозяин предоставила им укрытие, стала снабжать разными необходимыми веществами, а симбионты, в свою очередь, стали снабжать клетку энергией.

    С того момента бывшая свободноживущая бактерия сильно видоизменилась и настолько приспособилась к жизни внутри клетки, что теперь считается ее частью. Например, в митохондриях осталась лишь короткая ДНК с самым базовым набором генов, тогда как большая их часть исчезла за ненадобностью или переехала жить в ядерный геном. Поскольку симбиоз случился довольно давно — больше полутора миллиардов лет назад, — разобраться в ранних этапах со-настройки предков эукариот и их митохондрий времена довольно сложно. В основном это делается при помощи реконструкции на основе современных митохондрий.

    Ангад Мехта (Angad Mehta) из Института Скриппс и его коллеги из нескольких калифорнийских институтов подошли к решению этого вопроса с неожиданной стороны. Они предложили создать для исследований синтетическую модель свежего эндосимбиоза бактерий и эукариот, «подружив» два современных свободноживущих организма: дрожжи (Saccharomyces cerevisiae) и кишечную палочку (Escherichia coli). Для получения корректной и жизнеспособной модели оказалось необходимым правильно подготовить встречу потенциальных симбионтов.

    Для начала клетки дрожжей «заинтересовали» в симбиозе. Поскольку у современных эукариот уже есть митохондрии, исследователи попытались их «отключить». Для эксперимента сперва взяли клетки дрожжей, у которых вообще не было митохондриальной ДНК. Поскольку в ней закодировано все самое нужное для работы митохондрий, то такие клетки жили очень плохо и только на специальной питательной среде, не требующей переработки углеводов митохондриями. Кроме этого, ученые взяли дрожжи, в которых митохондрии были покалечены чуть меньше — в них испортили всего один, но важный ген cox2.

    В пару к дрожжам была подобран симбионт — такой, в присутствие которого которого эти поломки бы компенсировались. Кишечная палочка Esherichia coli — модельная бактерия в биологии — относительно близкий родственник предков митохондрий. Тем не менее, ее тоже пришлось адаптировать чтобы научить дорожить дружбой с дрожжами. Во-первых, ей сломали путь биосинтеза тиамина (он же витамин B1). Теперь она могла расти только в среде, в которой он есть, например с дрожжами. Во-вторых, её заставили делиться энергией с потенциальным хозяином. В качестве аккумуляторов энергии клетки используют АТФ, и в нормальных эукариотических клетках в мембрану митохондрии встроен транспортер, который позволяет АТФ проходить из митохондрии в цитоплазму, а молекулам АДФ («разряженный аккумулятор») обратно. У кишечной палочки такого транспортера не предусмотрено, и поэтому его пришлось вставить его из другой бактерии. Помимо того, кишечной палочке добавили ген зеленого флуоресцентного белка чтобы бактерию было легко различить с помощью микроскопии.

    После того, как организмы были подготовлены ко встрече друг с другом, их посадили вместе, и дальше, чтобы отобрать варианты с удачным симбиозом, начали растить на среде, для переработки которой дрожжам бы понадобилась помощь кишечных палочек. Оказалось, что дрожжи без митохондриальной ДНК не выживают в таких условиях, а дрожжи с выключенным cox2 геном образуют очень маленькое число колоний. По идее, эти колонии могли выжить за счет бактерий, которые их окружали, и не формировать эндосимбиоз. Чтобы учесть такой вариант, исследователи пересадили эти колонии на среду, в которой не могут расти отдельно ни дрожжи, ни кишечные палочки (без тиамина и без альтернативных источников энергии). Оказалось, что в таких условиях не выжил никто.

    Чтобы еще больше увеличить вероятность удачного симбиоза, исследователи решили повлиять на способность бактерий не перевариваться внутри дрожжей. У патогенных бактерий есть для этой цели специальные SNARE-подобные белки. Они помогают манипулировать везикулярным транспортом хозяина и избежать попадания в лизосому — «желудок клетки». Кишечную палочку, которая к этому моменту уже синтезировали флуоресцентный белок и светилась зеленым светом, не росла без тиамина и могла выпускать АТФ наружу клетки, исследователи наделили вдобавок SNARE-подобными генами из патогенной хламидии, и повторили эксперимент еще раз. На этот раз было обнаружено много химерных организмов из дрожжевой клетки с бактериями внутри, которые поддерживались на протяжении нескольких поколений. Чтобы полностью исключить возможность внешнего симбиоза, исследователи добавили в среду антибиотик, но и в этом случае колонии химер не исчезали даже после нескольких раундов пересаживания со среды на среду.

    Авторы статьи считают, что подобная синтетическая модель эндосимбиоза позволит лучше разобраться в том, как происходила коэволюция митохондрии и эукариотической клетки, в том числе — как уменьшался бактериальный геном (свободноживущая бактерия обычно имеет несколько тысяч разных генов, тогда как в геноме митохондрии их не больше ста). Например, они попробовали убрать из него еще один важный ген и оказалось, что химеры с такими кишечными палочками тоже вполне жизнеспособны.

    Вера Мухина

    Источник

    Читайте также:  Хронический пиелонефрит вызванный кишечной палочкой