Вид кишечная палочка род
Кишечная палочка (син.: Bacterium coli commune, Escherichia coli) – грамотрицательная палочка семейства Enterobacteriaceae, рода Escherichia. Впервые выделена и описана в 1885 г. Т. Эшерихом. По систематике комитета общества американских бактериологов (Soc. Amer. Bact, committee, 1920) относится к роду Escherichia Castellani and Chalmers, включающему 22 вида.
Подкомитет по энтеробактериям (Enterobacteriaceae Subcommittee, 1962) отнес E. coli к группе Escherichia – Shigella, к-рая по классификации Юинга и Кауффманна представлена одноименным трибом, включающим два рода – Escherichia и Shigella. Род Escherichia по данной классификации и классификации определителя бактерий Берджи (Bergey’s Manuel of Determinative Bacteriology) включает только один вид – E. coli. Последний по антигенной структуре подразделяется на О- и ОК-серогруппы и на разнообразные биотипы: серологические, ферментативные, фаготипы, колицино- и колициногенотипы.
Одни из биотипов Кишечной палочки (так наз. банальные штаммы) являются комменсалами кишечного тракта людей и животных, другие относятся к паразитам, вызывающим заболевания.
Многие банальные штаммы Кишечной палочки обладают антагонистическими свойствами, препятствуя развитию в кишечнике патогенных энтеробактерий, дрожжеподобных грибков и других микробов. Некоторые штаммы Кишечной палочки синтезируют витамин В12 и другие факторы роста, покрывая в определенной мере потребности в них организма хозяина. Длительное применение антибиотиков широкого спектра действия приводит к гибели К. п. и развитию дисбактериоза (см.).
Кишечная палочка как постоянный обитатель кишечного тракта (см. Кишечник, микрофлора) выделяется с фекалиями в окружающую среду (почву, водоемы), где она не размножается, но сохраняет свою жизнеспособность примерно такой же срок, как и патогенные энтеробактерии (шигеллы, сальмонеллы). Поэтому она является санитарно-показательным микроорганизмом. Обнаружение К. п в исследуемых пробах указывает на их фекальное загрязнение (см. Коли-индекс, коли-титр), при к-ром наряду с К. п. могут встретиться возбудители кишечных инфекций.
Определенные биотипы К. п. могут явиться возбудителями острых кишечных инфекций и других заболеваний человека (см. Коли-инфекция). Их относят к энтеропатогенным К. п. (син. энтеропатогенные эшерихии). К. п., продуцирующие энтеротоксин, называют энтеротоксигенными. Дифференцировка этих бактерий производится по О- и OK-антигенам, что позволяет отнести их к определенным серогруппам и серотипам. Установлена этиологическую роль E. coli серогрупп 026, 055, 086, 0111, 0126 и др. при колиэнтеритах детей раннего возраста; серогрупп 025, 028 а, с, 032, 0124, 0144 и др. при дизентериеподобных заболеваниях взрослых и детей; серогрупп 01, 06, 015, 078, 0112 а, b,0148 при холероподобных заболеваниях людей. При инфекциях мочевыводящих путей встречаются Е. coli серогрупп 02, 06, 09, 018 и др., при аппендиците – 01, 02, 08, 015 и др., при холецистите – 01, 08, 011. При колибактериозе у животных выделены от телят Е. coli серогрупп 08, 09, 078, 0115 и др., от поросят – 08, 0138, 0141, 0149 и др. Иногда К. п. вызывают колисепсис, перитонит, эндотоксический (септический) шок (см. Аутоинтоксикация), пищевые токсикоинфекции.
Кишечная палочка используется как универсальная модель в общей и молекулярной генетике. Изучение огромного числа разнообразных мутантов одного из стандартных штаммов К. п.- Е. coli К-12 дало возможность составить генную карту и генный каталог бактериальной хромосомы (см. Бактерии).
Экология
Резервуаром Кишечной палочки в природе является человек, толстая кишка к-рого заселяется разными биотипами этого микроба с момента перехода ребенка на смешанное питание, примерно к концу первого года жизни. Количество К. п. в 1 г испражнений колеблется от нескольких миллионов до 1-3 млрд. особей. На протяжении жизни человека происходит многократная смена биотипов К. п. в кишечнике. Определенную роль в этом процессе играет режим питания, перенесенные инфекции, лечение химиопрепаратами, антибиотиками и другие факторы. В естественных условиях К. п. обитает также в кишечнике домашних животных, птиц, диких млекопитающих, рептилий, рыб и многих беспозвоночных.
Морфология
Электронограмма ультратонкого среза клетки E. coli: 1 – нуклеоид; 2 – цитоплазма; 3 – цитоплазматическая мембрана; 4 – клеточная стенка.
Клетки E. coli имеют форму палочек с закругленными концами длиной 1-2 мкм, толщиной 0,4-0,6 мкм (рис.).
Кишечная палочка грамотрицательна, ультраструктура сходна с другими грамотрицательными бактериями. Наряду с подвижными встречаются неподвижные формы.
Жгутики расположены перитрихиально. Спор не образуют. Встречаются штаммы с выраженной капсулой, у некоторых штаммов обнаружены реснички (пили).
Культуральные признаки
Культуры Кишечной палочки хорошо растут на обычных питательных средах при pH 7,2-7,4 и оптимальной t° 37°. К. п. является факультативным анаэробом (см. Анаэробы ). На плотных питательных средах образует гладкие, плоско-выпуклые, круглые, опалового цвета мутноватые, колонии. На среде Эндо колонии К. п. окрашены в красно-фиолетовый цвет с металлическим блеском. При росте на жидких средах К. п. дает помутнение и осадок.
Ферментативные свойства
К. п. продуцирует многочисленные сахаролитические ферменты, быстро ферментирует глюкозу и другие углеводы, чаще всего с кислото- и газообразованием. Почти все биотипы К. п. постоянно ферментируют маннит, арабинозу, мальтозу с образованием к-ты; св. 90% штаммов – лактозу, сорбит; непостоянно – сахарозу, раффинозу, рамнозу, ксилозу, дульцит, салицин; как правило, не ферментируют адонит и инозит. К. п. не утилизирует цитрат аммония, малонат натрия, не растет на среде с цианистым калием, не редуцирует нитраты в нитриты, не расщепляет мочевину, не разжижает желатину, большинство штаммов образует индол и не выделяет H2S. К. п. дает положительную реакцию с метилротом и отрицательную реакцию Фогеса – Проскауэра (см. Фогеса-Проскауэра реакция), не синтезирует ферменты цитохромоксидазу и фенилаланиндезаминазу, непостоянно декарбоксилирует лизин, орнитин и дегидролизует аргинин.
Антигены
Кишечная палочка содержит О-, К- и Н-антигены. О(соматические)-антигены у К. п., шигелл и сальмонелл имеют сходное хим. строение и связаны с липополисахаридом (ЛПС) клеточной стенки (см. Липополисахариды). Иммунохим, специфичность О-антигена определяется составом гексасахаридов в повторяющихся звеньях концевого участка полисахаридной цепи, к-рая другим концом связана через 2-кето-З-дезоксиоктонат (КДО) с липидом А (I). Так, структура ЛПС Е. coli 0111: В4 представлена следующим образом:
Обозначения: Кол – колитоза, Гл – глюкоза, Гал – галактоза, N-АцГл – N-ацетилглюкозамин, Геп – гептоза, х – неопределенный компонент.
Количество сахаров в одном и том же концевом звене, так же как и число детерминантных звеньев у разных серогрупп эшерихий, неодинаковое. Специфичность О-антигенов К. п. обычно определяется в реакции агглютинации (см.) с О- или ОВ-агглютинирующими колисыворотками на предметном стекле, реже другими методами.
К-антигенами обозначают поверхностные антигены, которые связаны с капсулой и с ЛПС К. п. Их подразделяют на А-, В- и L-антигены, отличающиеся друг от друга чувствительностью к высокой температуре и хим. агентам. Наиболее высокой устойчивостью к нагреванию (до 100° в течение 2,5 час.), спирту и 1 н. р-ру HCl обладает А-антиген, наименее устойчив L-антиген. У большинства К. п. К-антигены представляют собой кислые полисахариды, содержащие уроновые к-ты. Некоторые К-антигены (К 88) содержат только белок. К. п., имеющие К-антигены, не агглютинируются гомологичной О-коли-сывороткой. Эта особенность присуща живым культурам и утрачивается после их кипячения или автоклавирования. Наличие К-антигенов устанавливается также в реакции адсорбции агглютининов и при иммуноэлектрофоретическом исследовании (см. Иммуноэлектрофорез).
Н-жгутиковые, или флагеллярные, антигены присущи активно подвижным штаммам. Они связаны с белком-флагеллином и определяют типовую иммунохимическую специфичность К. п. Н-антигены термолабильны. Они полностью разрушаются при кипячении в течение 2,5 час.
У К. п. описано ок. 170 О-антигенов, 97 К-антигенов и 50 Н-антигенов. Штаммы К. п., снабженные ресничками, содержат белковые реснитчатые антигены. Их обнаруживают в реакции гемагглютинации (см.).
Св. 123 О-серологических групп эшерихий связаны друг с другом односторонними или двусторонними антигенными связями. Более чем у 56 серогрупп установлены антигенные связи с шигеллами и у 42 серогрупп с другими представителями семейства Enterobacteriaceae.
К. п. обозначаются по антигенным формулам: на первом месте ставится номер О-антигена, на втором – К-антигена, на третьем Н-антигена. Тип К-антигена указывается в скобках. Напр., К(А), К (В) или K(L). Номера О-, К- и Н-антигенов разделяются двоеточиями. По антигенным формулам устанавливается принадлежность исследованного штамма к определенной серол, группе [напр., Е. coli 026:К60 (B6)] и серол, типу [напр., Е. coli 026:К60 (В6):Н2]. Различия в рецепторах (факторном составе) О-антигенов обозначаются малыми буквами лат. алфавита. Напр., серогруппа 0111 :К58 (В4) разделена на 0111a,b:К58(В4) и 0111a,c:К58(В4).
Плазмиды
Кишечные палочки могут содержать различные плазмиды (см.): профаг, F (фактор фертильности), Col (колициногенный фактор), R (фактор резистентности), К88 (антигенный фактор), Ent (энтеротоксигенный фактор) и др. Профаги могут вызывать изменения отдельных признаков К. п., напр. О-антигена (см. Лизогения). F-плазмиды определяют половую полярность и вызывают образование половых ресничек (sex-pili). Col-плазмиды контролируют образование колицинов, подавляющих рост филогенетически родственных бактерий. R-плазмиды ответственны за резистентность К. п. к антибиотикам. Плазмида К88 контролирует синтез одноименного антигена и нитей, определяющих адгезивные свойства энтеропатогенных и энтеротоксигенных К. п.; плазмиды могут быть двух типов. Один из них определяет синтез термолабильного, другой – термолабильного и термостабильного энтеротоксина.
Патогенность и вирулентность
Кишечные палочки – комменсалы толстого кишечника – могут вызывать гнойно-воспалительные процессы в органах и тканях при резком снижении резистентности организма.
Вирулентность К. п. проявляется в адгезивности К. п., т. е. прилипании к ворсинкам эпителия кишки, размножении в просвете тонкой и толстой кишки, пенетрации в клетки эпителия и во внутриклеточном размножении, а также в подавлении фагоцитарной активности макрофагов и полиморфно-ядерных лейкоцитов (см. Вирулентность). К. п.- возбудители колиэнтеритов у детей раннего возраста и холероподобных заболеваний у взрослых – размножаются на поверхности эпителиальных клеток кишки. К. п. – возбудители дизентериеподобных заболеваний – проникают в клетки эпителия и размножаются в них так же, как шигеллы. Проявление вирулентности К. п. зависит от дозы бактерий, проникших в кишечник человека. Вирулентность К. п. определяется в тканевых культурах, опытах на лабораторных животных при воспроизведении экспериментального колиэнтерита, пневмонии и других процессов. Пенетрационная способность устанавливается кератоконъюнктивальной пробой Шереня путем введения культуры К. п. на конъюнктиву глаза морской свинки. К. п. образует эндотоксин, связанный с ЛПС, который является частью О-антигена. Биол, активность эндотоксина выражается неодинаково у равных серогрупп К. п. Токсические свойства эндотоксина определяются целой молекулой ЛПС, поскольку один липид или полисахарид малотоксичны. Эндотоксин поражает свертывающую систему крови, вызывает феномен Швартцмана (см. Швартцмана феномен) и другие явления, обладает пирогенными, адъювантными, протективными и митогенными свойствами. В небольших дозах стимулирует, а в больших угнетает фагоцитарную реакцию.
Многие серогруппы К. п. продуцируют энтеротоксины. Более постоянно их образует Е. coli серогрупп 06, 08, 015, 075, 078, 0148 и др. Полагают, что одни серогруппы К. п. вызывают холероподобную диарею у людей, другие только у животных (поросят, телят).
К. п. продуцируют два типа энтеротоксина. Термостабильный энтеротоксин инактивируется только после кипячения в течение 30 мин., медленно диализируется через целлофан, сохраняет активность при кислых значениях pH и после обработки трипсином и проназой. Молекулярный вес 10^3 – 10^4. Антигенными свойствами не обладает. Термолабильный энтеротоксин инактивируется после 30-минутного прогревания при 60°, pH 4,0-5,0, под действием проназы и не дуализируется. Мол. вес точно не установлен. Антигенная специфичность термолабильных энтеротоксинов, продуцируемых разными серогруппами К. п., и холерогена одинакова. Они стимулируют активность аденилциклазы и вызывают накопление циклического аденозинмонофосфата (цАМФ), что приводит к нарушению секреции и развитию острой диареи.
Для обнаружения энтеротоксигенных К. п. используют их способность вызывать расширение перевязанных участков тонкой кишки кролика и образование серозно-геморрагического экссудата. Другие методы основаны на способности термолабильного энтеротоксина активировать аденилциклазу и вызывать накопление в культуре ткани (яичников китайских хомячков, щитовидной железы свиньи) цАМФ, что приводит к индукции синтеза разных метаболитов и морфологическим изменениям клеток.
Резистентность
Устойчивость Кишечной палочки к воздействию внешних факторов – обычная для аспорогенных бактерий. Во внешней среде (воде, почве) она выживает в зависимости от конкретных условий в течение нескольких месяцев При нагревании во взвесях погибает при 55° через час, при 60° – через 15 мин., в 1% р-ре фенола – через 10 мин., в р-ре сулемы 1:4000 – через 2 мин. К. п. обладает избирательной чувствительностью к бриллиантовому зеленому и солям тетратионовой к-ты. На этом основано применение ряда селективных сред. Многие штаммы К. п. высокочувствительны к мономицину, канамицину, гентамицину.
Методы выделения и идентификации. Материалом для выделения К. п. являются объекты внешней среды (вода, почва, смывы с разных предметов), при заболеваниях – испражнения, рвотные массы, моча, дуоденальное содержимое или кровь, а также пищевые продукты, подозреваемые как источник заражения. Материал засевают на дифференциально-диагностические среды (см.) с последующим выделением чистой культуры К. п. Идентификацию последней проводят путем изучения морфологических, культуральных, биохимических и антигенных признаков. Заключительным этапом является определение биотипа Кишечной палочки, особенно серогруппы и серотипа.
См. также Escherichia.
Библиография: Борисов Л. Б. Энтеропатогенные кишечные палочки и их фаги, Л., 1976, библиогр.; Кауфман Ф. Семейство кишечных бактерий, пер. с англ., М., 1959, библиогр.; Методы санитарно-микробиологического исследования объектов окружающей среды, под ред. Г. И. Сидоренко, М., 1978; Минкевич И. Е. Бактерии группы кишечной палочки как санитарно-показательные микроорганизмы, Л., 1949; Острые кишечные инфекции, под ред. Т. В. Перадзе, с. 73, Л., 1973, библиогр.; Tабачник А. Л., Гиршович Е. С. и Темпер Р. М. Энтеротоксигенные Е. coli, Журн, микр., эпид, и иммун., № 3, с. 31, 1977, библиогр.; Bergey’s manual of determinative bacteriology, ed. by R. E. Buchanan a. N. E. Gibbons, Baltimore, 1975, bibliogr.; Cooke E. M. Escherichia coli and man, Edinburgh-L., 1974; Medearis D. N., Cammitta B. M. a. Heath E. C. Cell wall composition and virulence in Escherichia coli, J. exp. Med., v. 128, p. 399, 1968; Orskov I. a. o. Serology, chemistry and genetics of O and К antigens of Escherichia coli, Bact. Rev., v. 41, p. 667, 1977, bibliogr.
Л. Б. Борисов.
Источник
Кишечная палочка (лат. Escherichia coli) – вид грамотрицательных палочковидных бактерий, широко распространённых в нижней части кишечника теплокровных животных. Большинство штаммов E. coli являются безвредными, однако серотип O157:H7 может вызывать тяжёлые пищевые отравления у людей[1] и животных[2]. Безвредные штаммы являются частью нормальной флоры кишечника человека и животных. Кишечная палочка приносит пользу организму хозяина, например, синтезируя витамин K[3], а также предотвращая развитие патогенных микроорганизмов в кишечнике[4][5].
E. coli не всегда обитают только в желудочно-кишечном тракте, способность некоторое время выживать в окружающей среде делает их важным индикатором для исследования образцов на наличие фекальных загрязнений[6][7]. Бактерии легко могут быть выращены в лабораторных условиях, поэтому кишечная палочка играет важную роль в генетических исследованиях. E. coli является одним из самых изученных прокариотических микроорганизмов и одним из самых важных объектов биотехнологии и микробиологии.
E. coli была описана немецким педиатром и бактериологом Теодором Эшерихом в 1885 году[6]. В настоящее время кишечную палочку относят к роду эшерихий (Escherichia), названному в честь Теодора Эшериха семейства энтеробактерий[8].
Штаммы
Модель последовательного бинарного деления E. coli
Штамм – это совокупность особей внутри вида, которая обладает свойствами, отличными от свойств других особей. Часто такие отличия могут быть обнаружены только на молекулярном уровне, однако имеют эффект на физиологию бактерии или жизненный цикл. Разные штаммы E. coli часто специфичны к определённым хозяевам, что делает возможным определение источника фекального заражения в образцах[6][7]. Например, если известно, какие штаммы E. coli представлены в образце воды, можно определить источник заражения, например, человек, другое млекопитающее или птица.
Новые штаммы E. coli появляются в результате мутаций и горизонтального переноса генов[9]. Некоторые штаммы вырабатывают особенности, губительные для организмов хозяина, такие вирулентные штаммы могут вызывать диарею, что неприятно в случае взрослых и может привести к летальному исходу у детей в развивающихся странах[10]. Более вирулентные штаммы, например, O157:H7 вызывают тяжёлые заболевания и даже приводят к смерти у пожилых людей, маленьких детей и лиц с ослабленным иммунитетом[10][11].
Биология и биохимия
E. coli – грамотрицательная бактерия, факультативный анаэроб, не образует эндоспор. Клетки палочковидные, со слегка закруглёнными концами, размером 0,4-0,8 × 1-3 мкм, объём клетки составляет около 0,6-0,7 мкм³[12][13]. Кишечная палочка может жить на разных субстратах. В анаэробных условиях E. coli образует в качестве продукта жизнедеятельности лактат, сукцинат, этанол, ацетат и углекислый газ. Часто при этом образуется молекулярный водород, который мешает образованию указанных выше метаболитов, поэтому E. coli часто сосуществует с микроорганизмами, потребляющими водород – например, с метаногенами или бактериями, восстанавливающими сульфат[14].
Оптимальный рост достигается культурами E. coli при температуре 37°C, некоторые штаммы могут делиться при температурах до 49°C[15]. Рост может стимулироваться аэробным или анаэробным дыханием, различными парами окислителей и восстановителей, в том числе, окислением пирувата, формиата, водорода, аминокислот, а также восстановлением кислорода, нитрата, диметилсульфоксида и триметиламин N-оксида[16].
Штаммы, имеющие жгутики, способны передвигаться. Жгутики расположены перитрихально[17]. На конце жгутика расположен белок FimH, который прикрепляется к молекулам сахаров на поверхности, а сам жгутик состоит из цепочки взаимосвязанных белковых сегментов, закрученных в форме тонкой длинной пружины и упруго вытягивающихся при воздействии силы[18][19].
Роль в нормальной микрофлоре
E. coli в норме заселяет кишечник новорождённого ребёнка в течение 40 часов после рождения, поступая с пищей или от лиц, контактирующих с ребёнком, и сохраняются на протяжении жизни на уровне 106-108 КОЕ/г содержимого толстой кишки. В ЖКТ кишечные палочки прилипают к слизистым оболочкам и являются основными представителями факультативных анаэробов у человека. Так как кишечные палочки не имеют бактериофагов, кодирующих факторы вирулетности, они являются комменсалами[20]. По другим данным, микроорганизмы (в том числе E. coli) начинают заселять человеческий организм ещё в утробе матери[21].
Непатогенный штамм Escherichia coli Nissle 1917 известен как Mutaflor и используется в медицине в качестве пробиотика, в основном для лечения желудочно-кишечных заболеваний, в том числе у новорождённых[22][23].
Модельный организм
E. coli часто используют в качестве модельного организма в микробиологических исследованиях. Культивируемые штаммы, например, E. coli K12 хорошо приспособлены к росту в лабораторных условиях, и, в отличие от штаммов дикого типа, неспособны заселять кишечник. Многие лабораторные штаммы утеряли способность образовывать биологические плёнки[24][25]. Описанные особенности предохраняют штаммы дикого типа от антител и химических агентов, но требуют больших затрат вещества и энергии.
В 1946 году Джошуа Ледерберг и Эдуард Тейтем описали явление конъюгации бактерий, используя кишечную палочку в качестве модельного организма[26]. E. coli остаётся одной из наиболее востребованных бактерий при изучении конъюгации и в настоящее время. E. coli была важным компонентом первых экспериментов по генетике бактериофагов[27], ранние исследователи, например, Сеймор Бензер, использовали E. coli и фаг T4 для изучения структуры генов[28]. До исследований Бензера не было известно, имеет ген линейную или разветвлённую структуру.
Кишечная палочка E. coli была одним из первых организмов, чей геном был полностью секвенирован. Последовательность нуклеотидов в геноме штамма К12 E. coli была опубликована в журнале Science в 1997 году[29].
Долговременный эксперимент по эволюции E. coli был начат Ричардом Ленски в 1988 году и позволил непосредственно наблюдать эволюционные изменения в лабораторных условиях[30]. В данном эксперименте одна популяция E. coli получила возможность аэробно метаболизировать цитрат. Такая способность встречается у E. coli в норме крайне редко. Неспособность к росту в аэробных условиях используют для того, чтобы отличить E. coli от других родственных бактерий, например, Salmonella. В ходе данного эксперимента в лабораторных условиях удалось наблюдать процесс видообразования.
Биотехнология
E. coli играет важную роль в современной промышленной микробиологии и биологической инженерии[31]. Работа Стенли Нормана Коэна и Герберта Бойера на E. coli с использованием плазмид и эндонуклеаз рестрикции для создания рекомбинантной ДНК находится у истоков современной биотехнологии[32].
Кишечную палочку считают универсальным организмом для синтеза чужеродных белков[33]. В E. coli исследователи вводят гены при помощи плазмид, что позволяет осуществлять биосинтез белков для промышленной ферментации. Также разработаны системы для синтеза в E. coli рекомбинантных белков. Одним из первых примеров использования технологии рекомбинантных ДНК является синтез аналога инсулина человека[34]. Модифицированные E. coli используют при разработке вакцин, синтеза иммобилизованных ферментов и решения других задач[33]. Однако в организме E. coli невозможно получать некоторые крупные белковые комплексы, содержащие дисульфидные связи, в частности, белки, для проявления биологической активности которых требуется посттрансляционная модификация[31].
Гены кишечной палочки также используются для генетической модификации растений, в частности из нее выделяют ген устойчивости к антибиотикам неомицину и канамицину.[35]
Патогенность
Непатогенные бактерии E. coli, в норме в больших количествах населяющие кишечник, могут, тем не менее, вызвать развитие патологии при попадании в другие органы или полости человеческого тела. Если бактерия попадает через отверстие в ЖКТ в брюшную полость, может возникнуть перитонит. Попав и размножившись во влагалище женщины, бактерия может вызвать или осложнить кольпит. Попадание бактерии в предстательную железу мужчины может быть патогенезом острого или хронического бактериального простатита. В таких случаях в лечение включается применение антибиотиков, проводимое таким образом, чтобы не подавлять нормальную микрофлору кишечника, иначе возможно развитие дисбактериоза.
E. coli очень чувствительна к таким антибиотикам, как стрептомицин или гентамицин. Однако E. coli может быстро приобретать лекарственную устойчивость[36].
Желудочно-кишечные инфекции
Вирулентные штаммы E. coli в норме отсутствуют в кишечнике, и заболевание наступает при заражении алиментарным путём. Передача патогенных E. coli часто происходит фекально-оральным путём[20][37][38]. Частые пути передачи могут быть вызваны: низкой гигиеной приготовления пищи[37], загрязнением продуктов навозом[39], поливом урожая загрязнённой водой или сточными водами[40], при выпасе диких свиней на пашнях[41], употреблением для питья воды, загрязнённой сточными водами[42].
Вирулентные штаммы E. coli могут вызывать гастроэнтериты, воспаления мочеполовой системы, а также менингит у новорождённых. В редких случаях вирулентные штаммы также вызывают гемолитический-уремический синдром, перитонит, мастит, сепсис и грамотрицательную пневмонию.
Низкотемпературная электронная микрофотография кластера E. coli. Увеличение в 10 000 раз. Индивидуальные бактерии представлены округлёнными цилиндрами.
Некоторые штаммы E. coli, например, O157:H7, O121, O104:H4 и O104:H21, синтезируют потенциально смертельные токсины. Пищевые отравления, инфекционным агентом при которых являются вирулентные E. coli, обычно вызваны употреблением в пищу немытых овощей или непрожаренного мяса.
Первичными резервуарами E. coli O157:H7 является мясной и молочный скот[43], который может переносить бактерии бессимптомно и выделять с фекалиями[43].
В случае заболеваний кишечника у новорождённых, при болезни Крона и при неспецифическом язвенном колите обнаруживают повышенные уровни E. coli в слизистых ЖКТ[44]. Инвазивные штаммы E. coli обнаружены в воспалённых тканях, а количество бактерий в очагах воспаления коррелирует с тяжестью воспаления в кишечнике[45].
Менингит новорождённых
Один из серотипов Escherichia coli содержит антиген K1. Заселение кишечника новорождённого данным серотипом бактерий при попадании бактерий из влагалища матери может приводить к менингиту. В отсутствие IgM от матери, которые не способны проникать через гемато-плацентарный барьер, и потому, что организм распознаёт K1 как собственный антиген, данный серотип вызывает тяжёлые воспаления мозга.
Лечение фагами
Терапия бактериофагами для лечения патогенных бактерий была разработана более 80 лет назад в Советском Союзе, где использовалась для лечения диареи, вызванной E. coli[46]. В настоящее время фаговая терапия доступна лишь в Центре фаговой терапии в Грузии и в Польше[47].
Бактериофаг Т4 является хорошо изученным фагом, инфицирующим E. coli.
Вакцина
Исследователи разрабатывают эффективные вакцины для снижения количества случаев заражения патогенными штаммами E. coli по всему миру[48].
В апреле 2009 года исследователи Мичиганского университета заявили о том, что разработали вакцину для одного из штаммов E. coli. Подана заявка на патент[49].
См. также
- Escherichia coli O104:H4
- Escherichia coli O157:H7
- Колиморфные бактерии
- Долговременный эксперимент по эволюции E. coli
Примечания
- ↑ Escherichia coli O157:H7. CDC Division of Bacterial and Mycotic Diseases. Проверено 25 января 2007. Архивировано 5 июля 2012 года.
- ↑ Vogt RL, Dippold L (2005). «Escherichia coli O157:H7 outbreak associated with consumption of ground beef, June-July 2002». Public Health Rep 120 (2): 174-8. PMID 15842119.
- ↑ Bentley R, Meganathan R (1 September 1982). «Biosynthesis of vitamin K (menaquinone) in bacteria». Microbiol. Rev. 46 (3): 241-80. PMID 6127606.
- ↑ Hudault S, Guignot J, Servin AL (July 2001). «Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection». Gut 49 (1): 47-55. DOI:10.1136/gut.49.1.47. PMID 11413110.
- ↑ Reid G, Howard J, Gan BS (September 2001). «Can bacterial interference prevent infection?». Trends Microbiol. 9 (9): 424-8. DOI:10.1016/S0966-842X(01)02132-1. PMID 11553454.
- ↑ 1 2 3 Feng P, Weagant S, Grant, M. Enumeration of Escherichia coli and the Coliform Bacteria. Bacteriological Analytical Manual (8th ed.) (недоступная ссылка – история). FDA/Center for Food Safety & Applied Nutrition (1 сентября 2002). Проверено 25 января 2007. Архивировано 29 ноября 2001 года.
- ↑ 1 2 Thompson, Andrea. E. coli Thrives in Beach Sands, Live Science (4 июня 2007). Проверено 3 декабря 2007.
- ↑ Escherichia. Taxonomy Browser. NCBI. Проверено 30 ноября 2007.
- ↑ Lawrence, J.G. and Ochman, H. (1998) Molecular archaeology of the Escherichia coli genome Proc. Natl. Acad. Sci. USA 95:9413-9417 PMC21352
- ↑ 1 2 Nataro JP, Kaper JB (January 1998). «Diarrheagenic Escherichia coli». Clin. Microbiol. Rev. 11 (1): 142-201. PMID 9457432.
- ↑ Viljanen MK, Peltola T, Junnila SY, et al. (October 1990). «Outbreak of diarrhoea due to Escherichia coli O111:B4 in schoolchildren and adults: association of Vi antigen-like reactivity». Lancet 336 (8719): 831-4. DOI:10.1016/0140-6736(90)92337-H. PMID 1976876.
- ↑ Facts E. coli: dimensions, as ed in bacteria: Diversity of structure of bacteria: – Britannica Online Encyclopedia (недоступная ссылка)
- ↑ Kubitschek HE (1 January 1990). «Cell volume increase in Escherichia coli after shifts to richer ». J. Bacteriol. 172 (1): 94-101. PMID 2403552.
- ↑ Madigan MT, Martinko JM. Brock Biology of microorganisms. – 11th. – Pearson, 2006. – ISBN 0-13-196893-9.
- ↑ Fotadar U, Zaveloff P, Terracio L (2005). «Growth of Escherichia coli at elevated temperatures». J. Basic Microbiol. 45 (5): 403-4. DOI:10.1002/jobm.200410542. PMID 16187264.
- ↑ Ingledew WJ, Poole RK (1984). «The respiratory chains of Escherichia coli». Microbiol. Rev. 48 (3): 222-71. PMID 6387427.
- ↑ Darnton NC, Turner L, Rojevsky S, Berg HC, On torque and tumbling in swimming Escherichia coli. J Bacteriol. 2007 Mar;189(5):1756-64. Epub 2006 Dec 22.
- ↑ Жгутики кишечной палочки оказались пружинами с липучками
- ↑ Uncoiling Mechanics of Escherichia coli Type I Fimbriae Are Optimized for Catch Bonds (англ.)
- ↑ 1 2 Evans Jr., Doyle J.; Dolores G. Evans. Escherichia Coli. Medical Microbiology, 4th edition. The University of Texas Medical Branch at Galveston. Проверено 2 декабря 2007. Архивировано 2 ноября 2007 года.
- ↑ Учёные обнаружили бактерии в кишечнике нерождённых детей – МедНовости – MedPortal.ru
- ↑ Grozdanov L, Raasch C, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, Dobrindt U (August 2004). «Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917.». J Bacteriol 186 (16): 5432-41. DOI:10.1128/JB.186.16.5432-5441.2004. PMID 15292145.
- ↑ Kamada N, Inoue N, Hisamatsu T, Okamoto S, Matsuoka K, Sato T, Chinen H, Hong KS, Yamada T, Suzuki Y, Suzuki T, Watanabe N, Tsuchimoto K, Hibi T (May 2005). «Nonpathogenic Escherichia coli strain Nissle1917 prevents murine acute and chronic colitis.». Inflamm Bowel Dis 11 (5): 455-63. DOI:10.1097/01.MIB.0000158158.55955.de. PMID 15867585.
- ↑ Fux CA, Shirtliff M, Stoodley P, Costerton JW (2005). «Can laboratory reference strains mirror “real-world” pathogenesis?». Trends Microbiol. 13 (2): 58-63. DOI:10.1016/j.tim.2004.11.001. PMID 15680764.
- ↑ Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998). «Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression». J. Bacteriol. 180 (9): 2442-9. PMID 9573197.
- ↑ Lederberg, Joshua; E.L. Tatum (October 19 1946). «Gene recombination in E. coli» (PDF). Nature 158: 558. DOI:10.1038/158558a0. Source: National Library of Medicine – The Joshua Lederberg Papers
- ↑ The Phage Course – Origins (недоступная ссылка – история). Cold Spring Harbor Laboratory (2006). Проверено 3 декабря 2007. Архивировано 20 июля 2002 года.
- ↑ Benzer, Seymour (March 1961). «On the topography of the genetic fine structure». PNAS 47 (3): 403-15. DOI:10.1073/pnas.47.3.403.
- ↑ Frederick R. Blattner, Guy Plunkett III, Craig Bloch, Nicole Perna, Valerie Burland, Monica Riley, Julio Collado-Vides, Jeremy Glasner, Christopher Rode, George Mayhew, Jason Gregor, Nelson Davis, Heather Kirkpatrick, Michael Goeden, Debra Rose, Bob Mau, Ying Shao (September 5 1997). «The complete genome sequence of Escherichia coli K-12». Science 277 (5331): 1453-1462. DOI:10.1126/science.277.5331.1453.
- ↑ Bacteria make major evolutionary shift in the lab New Scientist
- ↑ 1 2 Lee SY (1996). «High cell-density culture of Escherichia coli». Trends Biotechnol. 14 (3): 98-105. DOI:10.1016/0167-7799(96)80930-9. PMID 8867291.
- ↑ Russo E (January 2003). «The birth of biotechnology». Nature 421 (6921): 456-7. DOI:10.1038/nj6921-456a. PMID 12540923.
- ↑ 1 2 Cornelis P (2000). «Expressing genes in different Escherichia coli compartments». Curr. Opin. Biotechnol. 11 (5): 450-4. DOI:10.1016/S0958-1669(00)00131-2. PMID 11024362.
- ↑ Tof, Ilanit Recombinant DNA Technology in the Synthesis of Human Insulin. Little Tree Pty. Ltd. (1994). Проверено 30 ноября 2007. Архивировано 5 июля 2012 года.
- ↑ Event Name: MON801 (MON80100)
- ↑ Gene Sequence Of Deadly E. Coli Reveals Surprisingly Dynamic Genome. Science Daily (25 января 2001). Проверено 8 февраля 2007. Архивировано 5 июля 2012 года.
- ↑ 1 2 Retail Establishments; Annex 3 – Hazard Analysis. Managing Food Safety: A Manual for the Voluntary Use of HACCP Principles for Operators of Food Service and Retail Establishments. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition (April 2006). Проверено 2 декабря 2007. Архивировано 7 июня 2007 года.
- ↑ Gehlbach, S.H.; J.N. MacCormack, B.M. Drake, W.V. Thompson (April 1973). «Spread of disease by fecal-oral route in day nurseries». Health Service Reports 88 (4): 320-322. PMID 4574421.
- ↑ Sabin Russell. Spinach E. coli ed to cattle; Manure on pasture had same strain as bacteria in outbreak, San Francisco Chronicle (October 13, 2006). Проверено 2 декабря 2007.
- ↑ Heaton JC, Jones K (March 2008). «Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review». J. Appl. Microbiol. 104 (3): 613-26. DOI:10.1111/j.1365-2672.2007.03587.x. PMID 17927745.
- ↑ Thomas R. DeGregori. CGFI: Maddening Misrmation on Biotech and Industrial Agriculture (недоступная ссылка – история) (17 августа 2007). Проверено 8 декабря 2007. Архивировано 13 октября 2007 года.
- ↑ Chalmers, R.M.; H. Aird, F.J. Bolton (2000). «Waterborne Escherichia coli O157». Society for Applied Microbiology Symposium Series (29): 124S-132S. PMID 10880187.
- ↑ 1 2 Bach, S.J.; T.A. McAllister, D.M. Veira, V.P.J. Gannon, and R.A. Holley (2002). «Transmission and control of Escherichia coli O157:H7». Canadian Journal of Animal Science 82: 475-490. (недоступная ссылка)
- ↑ Rolhion N, Darfeuille-Michaud A (2007). «Adherent-invasive Escherichia coli in inflammatory bowel disease». Inflamm. Bowel Dis. 13 (10): 1277-83. DOI:10.1002/ibd.20176. PMID 17476674.
- ↑ Baumgart M, Dogan B, Rishniw M, et al. (2007). «Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum». ISME J 1 (5): 403-18. DOI:10.1038/ismej.2007.52. PMID 18043660.
- ↑ Therapeutic use of bacteriophages in bacterial infections (недоступная ссылка – история). Polish Academy of Sciences. Архивировано 8 февраля 2006 года.
- ↑ Medical conditions treated with phage therapy. Phage Therapy Center. Архивировано 5 июля 2012 года.
- ↑ Girard M, Steele D, Chaignat C, Kieny M (2006). «A review of vaccine re and development: human enteric infections». Vaccine 24 (15): 2732-50. DOI:10.1016/j.vaccine.2005.10.014. PMID 16483695.
- ↑ Reers develop E. coli vaccine
Литература
- «Микрокосм». Глава из книги Карл Циммер
Источник